1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <[email protected]>
9  *	   Lai Jiangshan <[email protected]>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
init_srcu_struct_data(struct srcu_struct * ssp)122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	BUILD_BUG_ON(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
141 		sdp->mynode = NULL;
142 		sdp->cpu = cpu;
143 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
144 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
145 		sdp->ssp = ssp;
146 	}
147 }
148 
149 /* Invalid seq state, used during snp node initialization */
150 #define SRCU_SNP_INIT_SEQ		0x2
151 
152 /*
153  * Check whether sequence number corresponding to snp node,
154  * is invalid.
155  */
srcu_invl_snp_seq(unsigned long s)156 static inline bool srcu_invl_snp_seq(unsigned long s)
157 {
158 	return s == SRCU_SNP_INIT_SEQ;
159 }
160 
161 /*
162  * Allocated and initialize SRCU combining tree.  Returns @true if
163  * allocation succeeded and @false otherwise.
164  */
init_srcu_struct_nodes(struct srcu_struct * ssp,gfp_t gfp_flags)165 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
166 {
167 	int cpu;
168 	int i;
169 	int level = 0;
170 	int levelspread[RCU_NUM_LVLS];
171 	struct srcu_data *sdp;
172 	struct srcu_node *snp;
173 	struct srcu_node *snp_first;
174 
175 	/* Initialize geometry if it has not already been initialized. */
176 	rcu_init_geometry();
177 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
178 	if (!ssp->srcu_sup->node)
179 		return false;
180 
181 	/* Work out the overall tree geometry. */
182 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
183 	for (i = 1; i < rcu_num_lvls; i++)
184 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
185 	rcu_init_levelspread(levelspread, num_rcu_lvl);
186 
187 	/* Each pass through this loop initializes one srcu_node structure. */
188 	srcu_for_each_node_breadth_first(ssp, snp) {
189 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
190 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
191 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
192 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
193 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
194 			snp->srcu_data_have_cbs[i] = 0;
195 		}
196 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
197 		snp->grplo = -1;
198 		snp->grphi = -1;
199 		if (snp == &ssp->srcu_sup->node[0]) {
200 			/* Root node, special case. */
201 			snp->srcu_parent = NULL;
202 			continue;
203 		}
204 
205 		/* Non-root node. */
206 		if (snp == ssp->srcu_sup->level[level + 1])
207 			level++;
208 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
209 				   (snp - ssp->srcu_sup->level[level]) /
210 				   levelspread[level - 1];
211 	}
212 
213 	/*
214 	 * Initialize the per-CPU srcu_data array, which feeds into the
215 	 * leaves of the srcu_node tree.
216 	 */
217 	level = rcu_num_lvls - 1;
218 	snp_first = ssp->srcu_sup->level[level];
219 	for_each_possible_cpu(cpu) {
220 		sdp = per_cpu_ptr(ssp->sda, cpu);
221 		sdp->mynode = &snp_first[cpu / levelspread[level]];
222 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
223 			if (snp->grplo < 0)
224 				snp->grplo = cpu;
225 			snp->grphi = cpu;
226 		}
227 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
228 	}
229 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
230 	return true;
231 }
232 
233 /*
234  * Initialize non-compile-time initialized fields, including the
235  * associated srcu_node and srcu_data structures.  The is_static parameter
236  * tells us that ->sda has already been wired up to srcu_data.
237  */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)238 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
239 {
240 	if (!is_static)
241 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
242 	if (!ssp->srcu_sup)
243 		return -ENOMEM;
244 	if (!is_static)
245 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
246 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
247 	ssp->srcu_sup->node = NULL;
248 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
249 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
250 	ssp->srcu_idx = 0;
251 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
252 	ssp->srcu_sup->srcu_barrier_seq = 0;
253 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
254 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
255 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
256 	ssp->srcu_sup->sda_is_static = is_static;
257 	if (!is_static)
258 		ssp->sda = alloc_percpu(struct srcu_data);
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
290 		       struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 EXPORT_SYMBOL_GPL(__init_srcu_struct);
298 
299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
300 
301 /**
302  * init_srcu_struct - initialize a sleep-RCU structure
303  * @ssp: structure to initialize.
304  *
305  * Must invoke this on a given srcu_struct before passing that srcu_struct
306  * to any other function.  Each srcu_struct represents a separate domain
307  * of SRCU protection.
308  */
init_srcu_struct(struct srcu_struct * ssp)309 int init_srcu_struct(struct srcu_struct *ssp)
310 {
311 	return init_srcu_struct_fields(ssp, false);
312 }
313 EXPORT_SYMBOL_GPL(init_srcu_struct);
314 
315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
316 
317 /*
318  * Initiate a transition to SRCU_SIZE_BIG with lock held.
319  */
__srcu_transition_to_big(struct srcu_struct * ssp)320 static void __srcu_transition_to_big(struct srcu_struct *ssp)
321 {
322 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
323 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
324 }
325 
326 /*
327  * Initiate an idempotent transition to SRCU_SIZE_BIG.
328  */
srcu_transition_to_big(struct srcu_struct * ssp)329 static void srcu_transition_to_big(struct srcu_struct *ssp)
330 {
331 	unsigned long flags;
332 
333 	/* Double-checked locking on ->srcu_size-state. */
334 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
335 		return;
336 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
337 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
338 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 		return;
340 	}
341 	__srcu_transition_to_big(ssp);
342 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
343 }
344 
345 /*
346  * Check to see if the just-encountered contention event justifies
347  * a transition to SRCU_SIZE_BIG.
348  */
spin_lock_irqsave_check_contention(struct srcu_struct * ssp)349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
350 {
351 	unsigned long j;
352 
353 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
354 		return;
355 	j = jiffies;
356 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
357 		ssp->srcu_sup->srcu_size_jiffies = j;
358 		ssp->srcu_sup->srcu_n_lock_retries = 0;
359 	}
360 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
361 		return;
362 	__srcu_transition_to_big(ssp);
363 }
364 
365 /*
366  * Acquire the specified srcu_data structure's ->lock, but check for
367  * excessive contention, which results in initiation of a transition
368  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
369  * parameter permits this.
370  */
spin_lock_irqsave_sdp_contention(struct srcu_data * sdp,unsigned long * flags)371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
372 {
373 	struct srcu_struct *ssp = sdp->ssp;
374 
375 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
376 		return;
377 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_check_contention(ssp);
379 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
380 	spin_lock_irqsave_rcu_node(sdp, *flags);
381 }
382 
383 /*
384  * Acquire the specified srcu_struct structure's ->lock, but check for
385  * excessive contention, which results in initiation of a transition
386  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
387  * parameter permits this.
388  */
spin_lock_irqsave_ssp_contention(struct srcu_struct * ssp,unsigned long * flags)389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
390 {
391 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
392 		return;
393 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
394 	spin_lock_irqsave_check_contention(ssp);
395 }
396 
397 /*
398  * First-use initialization of statically allocated srcu_struct
399  * structure.  Wiring up the combining tree is more than can be
400  * done with compile-time initialization, so this check is added
401  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
402  * compile-time initialized, to resolve races involving multiple
403  * CPUs trying to garner first-use privileges.
404  */
check_init_srcu_struct(struct srcu_struct * ssp)405 static void check_init_srcu_struct(struct srcu_struct *ssp)
406 {
407 	unsigned long flags;
408 
409 	/* The smp_load_acquire() pairs with the smp_store_release(). */
410 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
411 		return; /* Already initialized. */
412 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
413 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
414 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 		return;
416 	}
417 	init_srcu_struct_fields(ssp, true);
418 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
419 }
420 
421 /*
422  * Is the current or any upcoming grace period to be expedited?
423  */
srcu_gp_is_expedited(struct srcu_struct * ssp)424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
425 {
426 	struct srcu_usage *sup = ssp->srcu_sup;
427 
428 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
429 }
430 
431 /*
432  * Computes approximate total of the readers' ->srcu_lock_count[] values
433  * for the rank of per-CPU counters specified by idx, and returns true if
434  * the caller did the proper barrier (gp), and if the count of the locks
435  * matches that of the unlocks passed in.
436  */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx,bool gp,unsigned long unlocks)437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
438 {
439 	int cpu;
440 	unsigned long mask = 0;
441 	unsigned long sum = 0;
442 
443 	for_each_possible_cpu(cpu) {
444 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
445 
446 		sum += atomic_long_read(&sdp->srcu_lock_count[idx]);
447 		if (IS_ENABLED(CONFIG_PROVE_RCU))
448 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
449 	}
450 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
451 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
452 	if (mask & SRCU_READ_FLAVOR_LITE && !gp)
453 		return false;
454 	return sum == unlocks;
455 }
456 
457 /*
458  * Returns approximate total of the readers' ->srcu_unlock_count[] values
459  * for the rank of per-CPU counters specified by idx.
460  */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx,unsigned long * rdm)461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
462 {
463 	int cpu;
464 	unsigned long mask = 0;
465 	unsigned long sum = 0;
466 
467 	for_each_possible_cpu(cpu) {
468 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
469 
470 		sum += atomic_long_read(&sdp->srcu_unlock_count[idx]);
471 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
472 	}
473 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
474 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
475 	*rdm = mask;
476 	return sum;
477 }
478 
479 /*
480  * Return true if the number of pre-existing readers is determined to
481  * be zero.
482  */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
484 {
485 	bool did_gp;
486 	unsigned long rdm;
487 	unsigned long unlocks;
488 
489 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
490 	did_gp = !!(rdm & SRCU_READ_FLAVOR_LITE);
491 
492 	/*
493 	 * Make sure that a lock is always counted if the corresponding
494 	 * unlock is counted. Needs to be a smp_mb() as the read side may
495 	 * contain a read from a variable that is written to before the
496 	 * synchronize_srcu() in the write side. In this case smp_mb()s
497 	 * A and B (or X and Y) act like the store buffering pattern.
498 	 *
499 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
500 	 * Z) to prevent accesses after the synchronize_srcu() from being
501 	 * executed before the grace period ends.
502 	 */
503 	if (!did_gp)
504 		smp_mb(); /* A */
505 	else
506 		synchronize_rcu(); /* X */
507 
508 	/*
509 	 * If the locks are the same as the unlocks, then there must have
510 	 * been no readers on this index at some point in this function.
511 	 * But there might be more readers, as a task might have read
512 	 * the current ->srcu_idx but not yet have incremented its CPU's
513 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
514 	 * that most of the tasks have been preempted between fetching
515 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
516 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
517 	 * in a system whose address space was fully populated with memory.
518 	 * Call this quantity Nt.
519 	 *
520 	 * So suppose that the updater is preempted at this point in the
521 	 * code for a long time.  That now-preempted updater has already
522 	 * flipped ->srcu_idx (possibly during the preceding grace period),
523 	 * done an smp_mb() (again, possibly during the preceding grace
524 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
525 	 * How many times can a given one of the aforementioned Nt tasks
526 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
527 	 * counter, in the absence of nesting?
528 	 *
529 	 * It can clearly do so once, given that it has already fetched
530 	 * the old value of ->srcu_idx and is just about to use that value
531 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
532 	 * it leaves that SRCU read-side critical section, it will increment
533 	 * ->srcu_unlock_count[idx], which must follow the updater's above
534 	 * read from that same value.  Thus, as soon the reading task does
535 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
536 	 * guaranteed to get the new index.  Except that the increment of
537 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
538 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
539 	 * is before the smp_mb().  Thus, that task might not see the new
540 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
541 	 * which in turn means that this task might well increment
542 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
543 	 * not just once.
544 	 *
545 	 * However, it is important to note that a given smp_mb() takes
546 	 * effect not just for the task executing it, but also for any
547 	 * later task running on that same CPU.
548 	 *
549 	 * That is, there can be almost Nt + Nc further increments of
550 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
551 	 * of CPUs.  But this is OK because the size of the task_struct
552 	 * structure limits the value of Nt and current systems limit Nc
553 	 * to a few thousand.
554 	 *
555 	 * OK, but what about nesting?  This does impose a limit on
556 	 * nesting of half of the size of the task_struct structure
557 	 * (measured in bytes), which should be sufficient.  A late 2022
558 	 * TREE01 rcutorture run reported this size to be no less than
559 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
560 	 * comfortably beyond excessive.  Especially on 64-bit systems,
561 	 * which are unlikely to be configured with an address space fully
562 	 * populated with memory, at least not anytime soon.
563 	 */
564 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
565 }
566 
567 /**
568  * srcu_readers_active - returns true if there are readers. and false
569  *                       otherwise
570  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
571  *
572  * Note that this is not an atomic primitive, and can therefore suffer
573  * severe errors when invoked on an active srcu_struct.  That said, it
574  * can be useful as an error check at cleanup time.
575  */
srcu_readers_active(struct srcu_struct * ssp)576 static bool srcu_readers_active(struct srcu_struct *ssp)
577 {
578 	int cpu;
579 	unsigned long sum = 0;
580 
581 	for_each_possible_cpu(cpu) {
582 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
583 
584 		sum += atomic_long_read(&sdp->srcu_lock_count[0]);
585 		sum += atomic_long_read(&sdp->srcu_lock_count[1]);
586 		sum -= atomic_long_read(&sdp->srcu_unlock_count[0]);
587 		sum -= atomic_long_read(&sdp->srcu_unlock_count[1]);
588 	}
589 	return sum;
590 }
591 
592 /*
593  * We use an adaptive strategy for synchronize_srcu() and especially for
594  * synchronize_srcu_expedited().  We spin for a fixed time period
595  * (defined below, boot time configurable) to allow SRCU readers to exit
596  * their read-side critical sections.  If there are still some readers
597  * after one jiffy, we repeatedly block for one jiffy time periods.
598  * The blocking time is increased as the grace-period age increases,
599  * with max blocking time capped at 10 jiffies.
600  */
601 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
602 
603 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
604 module_param(srcu_retry_check_delay, ulong, 0444);
605 
606 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
607 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
608 
609 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
610 							// no-delay instances.
611 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
612 							// no-delay instances.
613 
614 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
615 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
616 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
617 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
618 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
619 // called from process_srcu().
620 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
621 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
622 
623 // Maximum per-GP-phase consecutive no-delay instances.
624 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
625 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
626 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
627 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
628 
629 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
630 module_param(srcu_max_nodelay_phase, ulong, 0444);
631 
632 // Maximum consecutive no-delay instances.
633 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
634 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
635 
636 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
637 module_param(srcu_max_nodelay, ulong, 0444);
638 
639 /*
640  * Return grace-period delay, zero if there are expedited grace
641  * periods pending, SRCU_INTERVAL otherwise.
642  */
srcu_get_delay(struct srcu_struct * ssp)643 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
644 {
645 	unsigned long gpstart;
646 	unsigned long j;
647 	unsigned long jbase = SRCU_INTERVAL;
648 	struct srcu_usage *sup = ssp->srcu_sup;
649 
650 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
651 	if (srcu_gp_is_expedited(ssp))
652 		jbase = 0;
653 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
654 		j = jiffies - 1;
655 		gpstart = READ_ONCE(sup->srcu_gp_start);
656 		if (time_after(j, gpstart))
657 			jbase += j - gpstart;
658 		if (!jbase) {
659 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
660 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
661 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
662 				jbase = 1;
663 		}
664 	}
665 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
666 }
667 
668 /**
669  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
670  * @ssp: structure to clean up.
671  *
672  * Must invoke this after you are finished using a given srcu_struct that
673  * was initialized via init_srcu_struct(), else you leak memory.
674  */
cleanup_srcu_struct(struct srcu_struct * ssp)675 void cleanup_srcu_struct(struct srcu_struct *ssp)
676 {
677 	int cpu;
678 	unsigned long delay;
679 	struct srcu_usage *sup = ssp->srcu_sup;
680 
681 	spin_lock_irq_rcu_node(ssp->srcu_sup);
682 	delay = srcu_get_delay(ssp);
683 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
684 	if (WARN_ON(!delay))
685 		return; /* Just leak it! */
686 	if (WARN_ON(srcu_readers_active(ssp)))
687 		return; /* Just leak it! */
688 	flush_delayed_work(&sup->work);
689 	for_each_possible_cpu(cpu) {
690 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
691 
692 		del_timer_sync(&sdp->delay_work);
693 		flush_work(&sdp->work);
694 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
695 			return; /* Forgot srcu_barrier(), so just leak it! */
696 	}
697 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
698 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
699 	    WARN_ON(srcu_readers_active(ssp))) {
700 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
701 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
702 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
703 		return; // Caller forgot to stop doing call_srcu()?
704 			// Or caller invoked start_poll_synchronize_srcu()
705 			// and then cleanup_srcu_struct() before that grace
706 			// period ended?
707 	}
708 	kfree(sup->node);
709 	sup->node = NULL;
710 	sup->srcu_size_state = SRCU_SIZE_SMALL;
711 	if (!sup->sda_is_static) {
712 		free_percpu(ssp->sda);
713 		ssp->sda = NULL;
714 		kfree(sup);
715 		ssp->srcu_sup = NULL;
716 	}
717 }
718 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
719 
720 /*
721  * Check for consistent reader flavor.
722  */
__srcu_check_read_flavor(struct srcu_struct * ssp,int read_flavor)723 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
724 {
725 	int old_read_flavor;
726 	struct srcu_data *sdp;
727 
728 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
729 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
730 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
731 
732 	sdp = raw_cpu_ptr(ssp->sda);
733 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
734 	if (!old_read_flavor) {
735 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
736 		if (!old_read_flavor)
737 			return;
738 	}
739 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
740 }
741 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
742 
743 /*
744  * Counts the new reader in the appropriate per-CPU element of the
745  * srcu_struct.
746  * Returns a guaranteed non-negative index that must be passed to the
747  * matching __srcu_read_unlock().
748  */
__srcu_read_lock(struct srcu_struct * ssp)749 int __srcu_read_lock(struct srcu_struct *ssp)
750 {
751 	int idx;
752 
753 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
754 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
755 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
756 	return idx;
757 }
758 EXPORT_SYMBOL_GPL(__srcu_read_lock);
759 
760 /*
761  * Removes the count for the old reader from the appropriate per-CPU
762  * element of the srcu_struct.  Note that this may well be a different
763  * CPU than that which was incremented by the corresponding srcu_read_lock().
764  */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)765 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
766 {
767 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
768 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
769 }
770 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
771 
772 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
773 
774 /*
775  * Counts the new reader in the appropriate per-CPU element of the
776  * srcu_struct, but in an NMI-safe manner using RMW atomics.
777  * Returns an index that must be passed to the matching srcu_read_unlock().
778  */
__srcu_read_lock_nmisafe(struct srcu_struct * ssp)779 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
780 {
781 	int idx;
782 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
783 
784 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
785 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
786 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
787 	return idx;
788 }
789 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
790 
791 /*
792  * Removes the count for the old reader from the appropriate per-CPU
793  * element of the srcu_struct.  Note that this may well be a different
794  * CPU than that which was incremented by the corresponding srcu_read_lock().
795  */
__srcu_read_unlock_nmisafe(struct srcu_struct * ssp,int idx)796 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
797 {
798 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
799 
800 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
801 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
802 }
803 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
804 
805 #endif // CONFIG_NEED_SRCU_NMI_SAFE
806 
807 /*
808  * Start an SRCU grace period.
809  */
srcu_gp_start(struct srcu_struct * ssp)810 static void srcu_gp_start(struct srcu_struct *ssp)
811 {
812 	int state;
813 
814 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
815 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
816 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
817 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
818 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
819 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
820 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
821 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
822 }
823 
824 
srcu_delay_timer(struct timer_list * t)825 static void srcu_delay_timer(struct timer_list *t)
826 {
827 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
828 
829 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
830 }
831 
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)832 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
833 				       unsigned long delay)
834 {
835 	if (!delay) {
836 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
837 		return;
838 	}
839 
840 	timer_reduce(&sdp->delay_work, jiffies + delay);
841 }
842 
843 /*
844  * Schedule callback invocation for the specified srcu_data structure,
845  * if possible, on the corresponding CPU.
846  */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)847 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
848 {
849 	srcu_queue_delayed_work_on(sdp, delay);
850 }
851 
852 /*
853  * Schedule callback invocation for all srcu_data structures associated
854  * with the specified srcu_node structure that have callbacks for the
855  * just-completed grace period, the one corresponding to idx.  If possible,
856  * schedule this invocation on the corresponding CPUs.
857  */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)858 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
859 				  unsigned long mask, unsigned long delay)
860 {
861 	int cpu;
862 
863 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
864 		if (!(mask & (1UL << (cpu - snp->grplo))))
865 			continue;
866 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
867 	}
868 }
869 
870 /*
871  * Note the end of an SRCU grace period.  Initiates callback invocation
872  * and starts a new grace period if needed.
873  *
874  * The ->srcu_cb_mutex acquisition does not protect any data, but
875  * instead prevents more than one grace period from starting while we
876  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
877  * array to have a finite number of elements.
878  */
srcu_gp_end(struct srcu_struct * ssp)879 static void srcu_gp_end(struct srcu_struct *ssp)
880 {
881 	unsigned long cbdelay = 1;
882 	bool cbs;
883 	bool last_lvl;
884 	int cpu;
885 	unsigned long gpseq;
886 	int idx;
887 	unsigned long mask;
888 	struct srcu_data *sdp;
889 	unsigned long sgsne;
890 	struct srcu_node *snp;
891 	int ss_state;
892 	struct srcu_usage *sup = ssp->srcu_sup;
893 
894 	/* Prevent more than one additional grace period. */
895 	mutex_lock(&sup->srcu_cb_mutex);
896 
897 	/* End the current grace period. */
898 	spin_lock_irq_rcu_node(sup);
899 	idx = rcu_seq_state(sup->srcu_gp_seq);
900 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
901 	if (srcu_gp_is_expedited(ssp))
902 		cbdelay = 0;
903 
904 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
905 	rcu_seq_end(&sup->srcu_gp_seq);
906 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
907 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
908 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
909 	spin_unlock_irq_rcu_node(sup);
910 	mutex_unlock(&sup->srcu_gp_mutex);
911 	/* A new grace period can start at this point.  But only one. */
912 
913 	/* Initiate callback invocation as needed. */
914 	ss_state = smp_load_acquire(&sup->srcu_size_state);
915 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
916 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
917 					cbdelay);
918 	} else {
919 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
920 		srcu_for_each_node_breadth_first(ssp, snp) {
921 			spin_lock_irq_rcu_node(snp);
922 			cbs = false;
923 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
924 			if (last_lvl)
925 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
926 			snp->srcu_have_cbs[idx] = gpseq;
927 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
928 			sgsne = snp->srcu_gp_seq_needed_exp;
929 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
930 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
931 			if (ss_state < SRCU_SIZE_BIG)
932 				mask = ~0;
933 			else
934 				mask = snp->srcu_data_have_cbs[idx];
935 			snp->srcu_data_have_cbs[idx] = 0;
936 			spin_unlock_irq_rcu_node(snp);
937 			if (cbs)
938 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
939 		}
940 	}
941 
942 	/* Occasionally prevent srcu_data counter wrap. */
943 	if (!(gpseq & counter_wrap_check))
944 		for_each_possible_cpu(cpu) {
945 			sdp = per_cpu_ptr(ssp->sda, cpu);
946 			spin_lock_irq_rcu_node(sdp);
947 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
948 				sdp->srcu_gp_seq_needed = gpseq;
949 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
950 				sdp->srcu_gp_seq_needed_exp = gpseq;
951 			spin_unlock_irq_rcu_node(sdp);
952 		}
953 
954 	/* Callback initiation done, allow grace periods after next. */
955 	mutex_unlock(&sup->srcu_cb_mutex);
956 
957 	/* Start a new grace period if needed. */
958 	spin_lock_irq_rcu_node(sup);
959 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
960 	if (!rcu_seq_state(gpseq) &&
961 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
962 		srcu_gp_start(ssp);
963 		spin_unlock_irq_rcu_node(sup);
964 		srcu_reschedule(ssp, 0);
965 	} else {
966 		spin_unlock_irq_rcu_node(sup);
967 	}
968 
969 	/* Transition to big if needed. */
970 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
971 		if (ss_state == SRCU_SIZE_ALLOC)
972 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
973 		else
974 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
975 	}
976 }
977 
978 /*
979  * Funnel-locking scheme to scalably mediate many concurrent expedited
980  * grace-period requests.  This function is invoked for the first known
981  * expedited request for a grace period that has already been requested,
982  * but without expediting.  To start a completely new grace period,
983  * whether expedited or not, use srcu_funnel_gp_start() instead.
984  */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)985 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
986 				  unsigned long s)
987 {
988 	unsigned long flags;
989 	unsigned long sgsne;
990 
991 	if (snp)
992 		for (; snp != NULL; snp = snp->srcu_parent) {
993 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
994 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
995 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
996 				return;
997 			spin_lock_irqsave_rcu_node(snp, flags);
998 			sgsne = snp->srcu_gp_seq_needed_exp;
999 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
1000 				spin_unlock_irqrestore_rcu_node(snp, flags);
1001 				return;
1002 			}
1003 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1004 			spin_unlock_irqrestore_rcu_node(snp, flags);
1005 		}
1006 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1007 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1008 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1009 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1010 }
1011 
1012 /*
1013  * Funnel-locking scheme to scalably mediate many concurrent grace-period
1014  * requests.  The winner has to do the work of actually starting grace
1015  * period s.  Losers must either ensure that their desired grace-period
1016  * number is recorded on at least their leaf srcu_node structure, or they
1017  * must take steps to invoke their own callbacks.
1018  *
1019  * Note that this function also does the work of srcu_funnel_exp_start(),
1020  * in some cases by directly invoking it.
1021  *
1022  * The srcu read lock should be hold around this function. And s is a seq snap
1023  * after holding that lock.
1024  */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)1025 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1026 				 unsigned long s, bool do_norm)
1027 {
1028 	unsigned long flags;
1029 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1030 	unsigned long sgsne;
1031 	struct srcu_node *snp;
1032 	struct srcu_node *snp_leaf;
1033 	unsigned long snp_seq;
1034 	struct srcu_usage *sup = ssp->srcu_sup;
1035 
1036 	/* Ensure that snp node tree is fully initialized before traversing it */
1037 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1038 		snp_leaf = NULL;
1039 	else
1040 		snp_leaf = sdp->mynode;
1041 
1042 	if (snp_leaf)
1043 		/* Each pass through the loop does one level of the srcu_node tree. */
1044 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1045 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1046 				return; /* GP already done and CBs recorded. */
1047 			spin_lock_irqsave_rcu_node(snp, flags);
1048 			snp_seq = snp->srcu_have_cbs[idx];
1049 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1050 				if (snp == snp_leaf && snp_seq == s)
1051 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1052 				spin_unlock_irqrestore_rcu_node(snp, flags);
1053 				if (snp == snp_leaf && snp_seq != s) {
1054 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1055 					return;
1056 				}
1057 				if (!do_norm)
1058 					srcu_funnel_exp_start(ssp, snp, s);
1059 				return;
1060 			}
1061 			snp->srcu_have_cbs[idx] = s;
1062 			if (snp == snp_leaf)
1063 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1064 			sgsne = snp->srcu_gp_seq_needed_exp;
1065 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1066 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1067 			spin_unlock_irqrestore_rcu_node(snp, flags);
1068 		}
1069 
1070 	/* Top of tree, must ensure the grace period will be started. */
1071 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1072 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1073 		/*
1074 		 * Record need for grace period s.  Pair with load
1075 		 * acquire setting up for initialization.
1076 		 */
1077 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1078 	}
1079 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1080 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1081 
1082 	/* If grace period not already in progress, start it. */
1083 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1084 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1085 		srcu_gp_start(ssp);
1086 
1087 		// And how can that list_add() in the "else" clause
1088 		// possibly be safe for concurrent execution?  Well,
1089 		// it isn't.  And it does not have to be.  After all, it
1090 		// can only be executed during early boot when there is only
1091 		// the one boot CPU running with interrupts still disabled.
1092 		if (likely(srcu_init_done))
1093 			queue_delayed_work(rcu_gp_wq, &sup->work,
1094 					   !!srcu_get_delay(ssp));
1095 		else if (list_empty(&sup->work.work.entry))
1096 			list_add(&sup->work.work.entry, &srcu_boot_list);
1097 	}
1098 	spin_unlock_irqrestore_rcu_node(sup, flags);
1099 }
1100 
1101 /*
1102  * Wait until all readers counted by array index idx complete, but
1103  * loop an additional time if there is an expedited grace period pending.
1104  * The caller must ensure that ->srcu_idx is not changed while checking.
1105  */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)1106 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1107 {
1108 	unsigned long curdelay;
1109 
1110 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1111 	curdelay = !srcu_get_delay(ssp);
1112 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1113 
1114 	for (;;) {
1115 		if (srcu_readers_active_idx_check(ssp, idx))
1116 			return true;
1117 		if ((--trycount + curdelay) <= 0)
1118 			return false;
1119 		udelay(srcu_retry_check_delay);
1120 	}
1121 }
1122 
1123 /*
1124  * Increment the ->srcu_idx counter so that future SRCU readers will
1125  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1126  * us to wait for pre-existing readers in a starvation-free manner.
1127  */
srcu_flip(struct srcu_struct * ssp)1128 static void srcu_flip(struct srcu_struct *ssp)
1129 {
1130 	/*
1131 	 * Because the flip of ->srcu_idx is executed only if the
1132 	 * preceding call to srcu_readers_active_idx_check() found that
1133 	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1134 	 * and because that summing uses atomic_long_read(), there is
1135 	 * ordering due to a control dependency between that summing and
1136 	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1137 	 * ensures that if this updater saw a given reader's increment from
1138 	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1139 	 * from before the previous call to srcu_flip(), which should be
1140 	 * quite rare.  This ordering thus helps forward progress because
1141 	 * the grace period could otherwise be delayed by additional
1142 	 * calls to __srcu_read_lock() using that old (soon to be new)
1143 	 * value of ->srcu_idx.
1144 	 *
1145 	 * This sum-equality check and ordering also ensures that if
1146 	 * a given call to __srcu_read_lock() uses the new value of
1147 	 * ->srcu_idx, this updater's earlier scans cannot have seen
1148 	 * that reader's increments, which is all to the good, because
1149 	 * this grace period need not wait on that reader.  After all,
1150 	 * if those earlier scans had seen that reader, there would have
1151 	 * been a sum mismatch and this code would not be reached.
1152 	 *
1153 	 * This means that the following smp_mb() is redundant, but
1154 	 * it stays until either (1) Compilers learn about this sort of
1155 	 * control dependency or (2) Some production workload running on
1156 	 * a production system is unduly delayed by this slowpath smp_mb().
1157 	 * Except for _lite() readers, where it is inoperative, which
1158 	 * means that it is a good thing that it is redundant.
1159 	 */
1160 	smp_mb(); /* E */  /* Pairs with B and C. */
1161 
1162 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1163 
1164 	/*
1165 	 * Ensure that if the updater misses an __srcu_read_unlock()
1166 	 * increment, that task's __srcu_read_lock() following its next
1167 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1168 	 * counter update.  Note that both this memory barrier and the
1169 	 * one in srcu_readers_active_idx_check() provide the guarantee
1170 	 * for __srcu_read_lock().
1171 	 */
1172 	smp_mb(); /* D */  /* Pairs with C. */
1173 }
1174 
1175 /*
1176  * If SRCU is likely idle, in other words, the next SRCU grace period
1177  * should be expedited, return true, otherwise return false.  Except that
1178  * in the presence of _lite() readers, always return false.
1179  *
1180  * Note that it is OK for several current from-idle requests for a new
1181  * grace period from idle to specify expediting because they will all end
1182  * up requesting the same grace period anyhow.  So no loss.
1183  *
1184  * Note also that if any CPU (including the current one) is still invoking
1185  * callbacks, this function will nevertheless say "idle".  This is not
1186  * ideal, but the overhead of checking all CPUs' callback lists is even
1187  * less ideal, especially on large systems.  Furthermore, the wakeup
1188  * can happen before the callback is fully removed, so we have no choice
1189  * but to accept this type of error.
1190  *
1191  * This function is also subject to counter-wrap errors, but let's face
1192  * it, if this function was preempted for enough time for the counters
1193  * to wrap, it really doesn't matter whether or not we expedite the grace
1194  * period.  The extra overhead of a needlessly expedited grace period is
1195  * negligible when amortized over that time period, and the extra latency
1196  * of a needlessly non-expedited grace period is similarly negligible.
1197  */
srcu_should_expedite(struct srcu_struct * ssp)1198 static bool srcu_should_expedite(struct srcu_struct *ssp)
1199 {
1200 	unsigned long curseq;
1201 	unsigned long flags;
1202 	struct srcu_data *sdp;
1203 	unsigned long t;
1204 	unsigned long tlast;
1205 
1206 	check_init_srcu_struct(ssp);
1207 	/* If _lite() readers, don't do unsolicited expediting. */
1208 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_LITE)
1209 		return false;
1210 	/* If the local srcu_data structure has callbacks, not idle.  */
1211 	sdp = raw_cpu_ptr(ssp->sda);
1212 	spin_lock_irqsave_rcu_node(sdp, flags);
1213 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1214 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1215 		return false; /* Callbacks already present, so not idle. */
1216 	}
1217 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1218 
1219 	/*
1220 	 * No local callbacks, so probabilistically probe global state.
1221 	 * Exact information would require acquiring locks, which would
1222 	 * kill scalability, hence the probabilistic nature of the probe.
1223 	 */
1224 
1225 	/* First, see if enough time has passed since the last GP. */
1226 	t = ktime_get_mono_fast_ns();
1227 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1228 	if (exp_holdoff == 0 ||
1229 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1230 		return false; /* Too soon after last GP. */
1231 
1232 	/* Next, check for probable idleness. */
1233 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1234 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1235 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1236 		return false; /* Grace period in progress, so not idle. */
1237 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1238 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1239 		return false; /* GP # changed, so not idle. */
1240 	return true; /* With reasonable probability, idle! */
1241 }
1242 
1243 /*
1244  * SRCU callback function to leak a callback.
1245  */
srcu_leak_callback(struct rcu_head * rhp)1246 static void srcu_leak_callback(struct rcu_head *rhp)
1247 {
1248 }
1249 
1250 /*
1251  * Start an SRCU grace period, and also queue the callback if non-NULL.
1252  */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)1253 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1254 					     struct rcu_head *rhp, bool do_norm)
1255 {
1256 	unsigned long flags;
1257 	int idx;
1258 	bool needexp = false;
1259 	bool needgp = false;
1260 	unsigned long s;
1261 	struct srcu_data *sdp;
1262 	struct srcu_node *sdp_mynode;
1263 	int ss_state;
1264 
1265 	check_init_srcu_struct(ssp);
1266 	/*
1267 	 * While starting a new grace period, make sure we are in an
1268 	 * SRCU read-side critical section so that the grace-period
1269 	 * sequence number cannot wrap around in the meantime.
1270 	 */
1271 	idx = __srcu_read_lock_nmisafe(ssp);
1272 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1273 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1274 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1275 	else
1276 		sdp = raw_cpu_ptr(ssp->sda);
1277 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1278 	if (rhp)
1279 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1280 	/*
1281 	 * It's crucial to capture the snapshot 's' for acceleration before
1282 	 * reading the current gp_seq that is used for advancing. This is
1283 	 * essential because if the acceleration snapshot is taken after a
1284 	 * failed advancement attempt, there's a risk that a grace period may
1285 	 * conclude and a new one may start in the interim. If the snapshot is
1286 	 * captured after this sequence of events, the acceleration snapshot 's'
1287 	 * could be excessively advanced, leading to acceleration failure.
1288 	 * In such a scenario, an 'acceleration leak' can occur, where new
1289 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1290 	 * Also note that encountering advancing failures is a normal
1291 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1292 	 *
1293 	 * To see this, consider the following events which occur if
1294 	 * rcu_seq_snap() were to be called after advance:
1295 	 *
1296 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1297 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1298 	 *
1299 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1300 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1301 	 *
1302 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1303 	 *     any segment forward and fails.
1304 	 *
1305 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1306 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1307 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1308 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1309 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1310 	 *
1311 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1312 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1313 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1314 	 *     period (gp_num = X + 8). So acceleration fails.
1315 	 */
1316 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1317 	if (rhp) {
1318 		rcu_segcblist_advance(&sdp->srcu_cblist,
1319 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1320 		/*
1321 		 * Acceleration can never fail because the base current gp_seq
1322 		 * used for acceleration is <= the value of gp_seq used for
1323 		 * advancing. This means that RCU_NEXT_TAIL segment will
1324 		 * always be able to be emptied by the acceleration into the
1325 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1326 		 */
1327 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1328 	}
1329 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1330 		sdp->srcu_gp_seq_needed = s;
1331 		needgp = true;
1332 	}
1333 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1334 		sdp->srcu_gp_seq_needed_exp = s;
1335 		needexp = true;
1336 	}
1337 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1338 
1339 	/* Ensure that snp node tree is fully initialized before traversing it */
1340 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1341 		sdp_mynode = NULL;
1342 	else
1343 		sdp_mynode = sdp->mynode;
1344 
1345 	if (needgp)
1346 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1347 	else if (needexp)
1348 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1349 	__srcu_read_unlock_nmisafe(ssp, idx);
1350 	return s;
1351 }
1352 
1353 /*
1354  * Enqueue an SRCU callback on the srcu_data structure associated with
1355  * the current CPU and the specified srcu_struct structure, initiating
1356  * grace-period processing if it is not already running.
1357  *
1358  * Note that all CPUs must agree that the grace period extended beyond
1359  * all pre-existing SRCU read-side critical section.  On systems with
1360  * more than one CPU, this means that when "func()" is invoked, each CPU
1361  * is guaranteed to have executed a full memory barrier since the end of
1362  * its last corresponding SRCU read-side critical section whose beginning
1363  * preceded the call to call_srcu().  It also means that each CPU executing
1364  * an SRCU read-side critical section that continues beyond the start of
1365  * "func()" must have executed a memory barrier after the call_srcu()
1366  * but before the beginning of that SRCU read-side critical section.
1367  * Note that these guarantees include CPUs that are offline, idle, or
1368  * executing in user mode, as well as CPUs that are executing in the kernel.
1369  *
1370  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1371  * resulting SRCU callback function "func()", then both CPU A and CPU
1372  * B are guaranteed to execute a full memory barrier during the time
1373  * interval between the call to call_srcu() and the invocation of "func()".
1374  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1375  * again only if the system has more than one CPU).
1376  *
1377  * Of course, these guarantees apply only for invocations of call_srcu(),
1378  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1379  * srcu_struct structure.
1380  */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)1381 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1382 			rcu_callback_t func, bool do_norm)
1383 {
1384 	if (debug_rcu_head_queue(rhp)) {
1385 		/* Probable double call_srcu(), so leak the callback. */
1386 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1387 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1388 		return;
1389 	}
1390 	rhp->func = func;
1391 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1392 }
1393 
1394 /**
1395  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1396  * @ssp: srcu_struct in queue the callback
1397  * @rhp: structure to be used for queueing the SRCU callback.
1398  * @func: function to be invoked after the SRCU grace period
1399  *
1400  * The callback function will be invoked some time after a full SRCU
1401  * grace period elapses, in other words after all pre-existing SRCU
1402  * read-side critical sections have completed.  However, the callback
1403  * function might well execute concurrently with other SRCU read-side
1404  * critical sections that started after call_srcu() was invoked.  SRCU
1405  * read-side critical sections are delimited by srcu_read_lock() and
1406  * srcu_read_unlock(), and may be nested.
1407  *
1408  * The callback will be invoked from process context, but must nevertheless
1409  * be fast and must not block.
1410  */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)1411 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1412 	       rcu_callback_t func)
1413 {
1414 	__call_srcu(ssp, rhp, func, true);
1415 }
1416 EXPORT_SYMBOL_GPL(call_srcu);
1417 
1418 /*
1419  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1420  */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)1421 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1422 {
1423 	struct rcu_synchronize rcu;
1424 
1425 	srcu_lock_sync(&ssp->dep_map);
1426 
1427 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1428 			 lock_is_held(&rcu_bh_lock_map) ||
1429 			 lock_is_held(&rcu_lock_map) ||
1430 			 lock_is_held(&rcu_sched_lock_map),
1431 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1432 
1433 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1434 		return;
1435 	might_sleep();
1436 	check_init_srcu_struct(ssp);
1437 	init_completion(&rcu.completion);
1438 	init_rcu_head_on_stack(&rcu.head);
1439 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1440 	wait_for_completion(&rcu.completion);
1441 	destroy_rcu_head_on_stack(&rcu.head);
1442 
1443 	/*
1444 	 * Make sure that later code is ordered after the SRCU grace
1445 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1446 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1447 	 * because the current CPU might have been totally uninvolved with
1448 	 * (and thus unordered against) that grace period.
1449 	 */
1450 	smp_mb();
1451 }
1452 
1453 /**
1454  * synchronize_srcu_expedited - Brute-force SRCU grace period
1455  * @ssp: srcu_struct with which to synchronize.
1456  *
1457  * Wait for an SRCU grace period to elapse, but be more aggressive about
1458  * spinning rather than blocking when waiting.
1459  *
1460  * Note that synchronize_srcu_expedited() has the same deadlock and
1461  * memory-ordering properties as does synchronize_srcu().
1462  */
synchronize_srcu_expedited(struct srcu_struct * ssp)1463 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1464 {
1465 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1466 }
1467 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1468 
1469 /**
1470  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1471  * @ssp: srcu_struct with which to synchronize.
1472  *
1473  * Wait for the count to drain to zero of both indexes. To avoid the
1474  * possible starvation of synchronize_srcu(), it waits for the count of
1475  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1476  * and then flip the srcu_idx and wait for the count of the other index.
1477  *
1478  * Can block; must be called from process context.
1479  *
1480  * Note that it is illegal to call synchronize_srcu() from the corresponding
1481  * SRCU read-side critical section; doing so will result in deadlock.
1482  * However, it is perfectly legal to call synchronize_srcu() on one
1483  * srcu_struct from some other srcu_struct's read-side critical section,
1484  * as long as the resulting graph of srcu_structs is acyclic.
1485  *
1486  * There are memory-ordering constraints implied by synchronize_srcu().
1487  * On systems with more than one CPU, when synchronize_srcu() returns,
1488  * each CPU is guaranteed to have executed a full memory barrier since
1489  * the end of its last corresponding SRCU read-side critical section
1490  * whose beginning preceded the call to synchronize_srcu().  In addition,
1491  * each CPU having an SRCU read-side critical section that extends beyond
1492  * the return from synchronize_srcu() is guaranteed to have executed a
1493  * full memory barrier after the beginning of synchronize_srcu() and before
1494  * the beginning of that SRCU read-side critical section.  Note that these
1495  * guarantees include CPUs that are offline, idle, or executing in user mode,
1496  * as well as CPUs that are executing in the kernel.
1497  *
1498  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1499  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1500  * to have executed a full memory barrier during the execution of
1501  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1502  * are the same CPU, but again only if the system has more than one CPU.
1503  *
1504  * Of course, these memory-ordering guarantees apply only when
1505  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1506  * passed the same srcu_struct structure.
1507  *
1508  * Implementation of these memory-ordering guarantees is similar to
1509  * that of synchronize_rcu().
1510  *
1511  * If SRCU is likely idle as determined by srcu_should_expedite(),
1512  * expedite the first request.  This semantic was provided by Classic SRCU,
1513  * and is relied upon by its users, so TREE SRCU must also provide it.
1514  * Note that detecting idleness is heuristic and subject to both false
1515  * positives and negatives.
1516  */
synchronize_srcu(struct srcu_struct * ssp)1517 void synchronize_srcu(struct srcu_struct *ssp)
1518 {
1519 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1520 		synchronize_srcu_expedited(ssp);
1521 	else
1522 		__synchronize_srcu(ssp, true);
1523 }
1524 EXPORT_SYMBOL_GPL(synchronize_srcu);
1525 
1526 /**
1527  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1528  * @ssp: srcu_struct to provide cookie for.
1529  *
1530  * This function returns a cookie that can be passed to
1531  * poll_state_synchronize_srcu(), which will return true if a full grace
1532  * period has elapsed in the meantime.  It is the caller's responsibility
1533  * to make sure that grace period happens, for example, by invoking
1534  * call_srcu() after return from get_state_synchronize_srcu().
1535  */
get_state_synchronize_srcu(struct srcu_struct * ssp)1536 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1537 {
1538 	// Any prior manipulation of SRCU-protected data must happen
1539 	// before the load from ->srcu_gp_seq.
1540 	smp_mb();
1541 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1542 }
1543 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1544 
1545 /**
1546  * start_poll_synchronize_srcu - Provide cookie and start grace period
1547  * @ssp: srcu_struct to provide cookie for.
1548  *
1549  * This function returns a cookie that can be passed to
1550  * poll_state_synchronize_srcu(), which will return true if a full grace
1551  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1552  * this function also ensures that any needed SRCU grace period will be
1553  * started.  This convenience does come at a cost in terms of CPU overhead.
1554  */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1555 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1556 {
1557 	return srcu_gp_start_if_needed(ssp, NULL, true);
1558 }
1559 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1560 
1561 /**
1562  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1563  * @ssp: srcu_struct to provide cookie for.
1564  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1565  *
1566  * This function takes the cookie that was returned from either
1567  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1568  * returns @true if an SRCU grace period elapsed since the time that the
1569  * cookie was created.
1570  *
1571  * Because cookies are finite in size, wrapping/overflow is possible.
1572  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1573  * where in theory wrapping could happen in about 14 hours assuming
1574  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1575  * overflow lower bound is on the order of 24 days in the case of
1576  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1577  * system requires geologic timespans, as in more than seven million years
1578  * even for expedited SRCU grace periods.
1579  *
1580  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1581  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1582  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1583  * few minutes.  If this proves to be a problem, this counter will be
1584  * expanded to the same size as for Tree SRCU.
1585  */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1586 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1587 {
1588 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1589 	    !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1590 		return false;
1591 	// Ensure that the end of the SRCU grace period happens before
1592 	// any subsequent code that the caller might execute.
1593 	smp_mb(); // ^^^
1594 	return true;
1595 }
1596 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1597 
1598 /*
1599  * Callback function for srcu_barrier() use.
1600  */
srcu_barrier_cb(struct rcu_head * rhp)1601 static void srcu_barrier_cb(struct rcu_head *rhp)
1602 {
1603 	struct srcu_data *sdp;
1604 	struct srcu_struct *ssp;
1605 
1606 	rhp->next = rhp; // Mark the callback as having been invoked.
1607 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1608 	ssp = sdp->ssp;
1609 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1610 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1611 }
1612 
1613 /*
1614  * Enqueue an srcu_barrier() callback on the specified srcu_data
1615  * structure's ->cblist.  but only if that ->cblist already has at least one
1616  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1617  * it must have already registered the need for a future grace period,
1618  * so all we need do is enqueue a callback that will use the same grace
1619  * period as the last callback already in the queue.
1620  */
srcu_barrier_one_cpu(struct srcu_struct * ssp,struct srcu_data * sdp)1621 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1622 {
1623 	spin_lock_irq_rcu_node(sdp);
1624 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1625 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1626 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1627 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1628 				   &sdp->srcu_barrier_head)) {
1629 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1630 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1631 	}
1632 	spin_unlock_irq_rcu_node(sdp);
1633 }
1634 
1635 /**
1636  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1637  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1638  */
srcu_barrier(struct srcu_struct * ssp)1639 void srcu_barrier(struct srcu_struct *ssp)
1640 {
1641 	int cpu;
1642 	int idx;
1643 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1644 
1645 	check_init_srcu_struct(ssp);
1646 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1647 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1648 		smp_mb(); /* Force ordering following return. */
1649 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1650 		return; /* Someone else did our work for us. */
1651 	}
1652 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1653 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1654 
1655 	/* Initial count prevents reaching zero until all CBs are posted. */
1656 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1657 
1658 	idx = __srcu_read_lock_nmisafe(ssp);
1659 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1660 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1661 	else
1662 		for_each_possible_cpu(cpu)
1663 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1664 	__srcu_read_unlock_nmisafe(ssp, idx);
1665 
1666 	/* Remove the initial count, at which point reaching zero can happen. */
1667 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1668 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1669 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1670 
1671 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1672 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1673 }
1674 EXPORT_SYMBOL_GPL(srcu_barrier);
1675 
1676 /**
1677  * srcu_batches_completed - return batches completed.
1678  * @ssp: srcu_struct on which to report batch completion.
1679  *
1680  * Report the number of batches, correlated with, but not necessarily
1681  * precisely the same as, the number of grace periods that have elapsed.
1682  */
srcu_batches_completed(struct srcu_struct * ssp)1683 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1684 {
1685 	return READ_ONCE(ssp->srcu_idx);
1686 }
1687 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1688 
1689 /*
1690  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1691  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1692  * completed in that state.
1693  */
srcu_advance_state(struct srcu_struct * ssp)1694 static void srcu_advance_state(struct srcu_struct *ssp)
1695 {
1696 	int idx;
1697 
1698 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1699 
1700 	/*
1701 	 * Because readers might be delayed for an extended period after
1702 	 * fetching ->srcu_idx for their index, at any point in time there
1703 	 * might well be readers using both idx=0 and idx=1.  We therefore
1704 	 * need to wait for readers to clear from both index values before
1705 	 * invoking a callback.
1706 	 *
1707 	 * The load-acquire ensures that we see the accesses performed
1708 	 * by the prior grace period.
1709 	 */
1710 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1711 	if (idx == SRCU_STATE_IDLE) {
1712 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1713 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1714 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1715 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1716 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1717 			return;
1718 		}
1719 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1720 		if (idx == SRCU_STATE_IDLE)
1721 			srcu_gp_start(ssp);
1722 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1723 		if (idx != SRCU_STATE_IDLE) {
1724 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1725 			return; /* Someone else started the grace period. */
1726 		}
1727 	}
1728 
1729 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1730 		idx = 1 ^ (ssp->srcu_idx & 1);
1731 		if (!try_check_zero(ssp, idx, 1)) {
1732 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1733 			return; /* readers present, retry later. */
1734 		}
1735 		srcu_flip(ssp);
1736 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1737 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1738 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1739 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1740 	}
1741 
1742 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1743 
1744 		/*
1745 		 * SRCU read-side critical sections are normally short,
1746 		 * so check at least twice in quick succession after a flip.
1747 		 */
1748 		idx = 1 ^ (ssp->srcu_idx & 1);
1749 		if (!try_check_zero(ssp, idx, 2)) {
1750 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1751 			return; /* readers present, retry later. */
1752 		}
1753 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1754 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1755 	}
1756 }
1757 
1758 /*
1759  * Invoke a limited number of SRCU callbacks that have passed through
1760  * their grace period.  If there are more to do, SRCU will reschedule
1761  * the workqueue.  Note that needed memory barriers have been executed
1762  * in this task's context by srcu_readers_active_idx_check().
1763  */
srcu_invoke_callbacks(struct work_struct * work)1764 static void srcu_invoke_callbacks(struct work_struct *work)
1765 {
1766 	long len;
1767 	bool more;
1768 	struct rcu_cblist ready_cbs;
1769 	struct rcu_head *rhp;
1770 	struct srcu_data *sdp;
1771 	struct srcu_struct *ssp;
1772 
1773 	sdp = container_of(work, struct srcu_data, work);
1774 
1775 	ssp = sdp->ssp;
1776 	rcu_cblist_init(&ready_cbs);
1777 	spin_lock_irq_rcu_node(sdp);
1778 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1779 	rcu_segcblist_advance(&sdp->srcu_cblist,
1780 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1781 	/*
1782 	 * Although this function is theoretically re-entrant, concurrent
1783 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1784 	 * too early.
1785 	 */
1786 	if (sdp->srcu_cblist_invoking ||
1787 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1788 		spin_unlock_irq_rcu_node(sdp);
1789 		return;  /* Someone else on the job or nothing to do. */
1790 	}
1791 
1792 	/* We are on the job!  Extract and invoke ready callbacks. */
1793 	sdp->srcu_cblist_invoking = true;
1794 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1795 	len = ready_cbs.len;
1796 	spin_unlock_irq_rcu_node(sdp);
1797 	rhp = rcu_cblist_dequeue(&ready_cbs);
1798 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1799 		debug_rcu_head_unqueue(rhp);
1800 		debug_rcu_head_callback(rhp);
1801 		local_bh_disable();
1802 		rhp->func(rhp);
1803 		local_bh_enable();
1804 	}
1805 	WARN_ON_ONCE(ready_cbs.len);
1806 
1807 	/*
1808 	 * Update counts, accelerate new callbacks, and if needed,
1809 	 * schedule another round of callback invocation.
1810 	 */
1811 	spin_lock_irq_rcu_node(sdp);
1812 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1813 	sdp->srcu_cblist_invoking = false;
1814 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1815 	spin_unlock_irq_rcu_node(sdp);
1816 	/* An SRCU barrier or callbacks from previous nesting work pending */
1817 	if (more)
1818 		srcu_schedule_cbs_sdp(sdp, 0);
1819 }
1820 
1821 /*
1822  * Finished one round of SRCU grace period.  Start another if there are
1823  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1824  */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1825 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1826 {
1827 	bool pushgp = true;
1828 
1829 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1830 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1831 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1832 			/* All requests fulfilled, time to go idle. */
1833 			pushgp = false;
1834 		}
1835 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1836 		/* Outstanding request and no GP.  Start one. */
1837 		srcu_gp_start(ssp);
1838 	}
1839 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1840 
1841 	if (pushgp)
1842 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1843 }
1844 
1845 /*
1846  * This is the work-queue function that handles SRCU grace periods.
1847  */
process_srcu(struct work_struct * work)1848 static void process_srcu(struct work_struct *work)
1849 {
1850 	unsigned long curdelay;
1851 	unsigned long j;
1852 	struct srcu_struct *ssp;
1853 	struct srcu_usage *sup;
1854 
1855 	sup = container_of(work, struct srcu_usage, work.work);
1856 	ssp = sup->srcu_ssp;
1857 
1858 	srcu_advance_state(ssp);
1859 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1860 	curdelay = srcu_get_delay(ssp);
1861 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1862 	if (curdelay) {
1863 		WRITE_ONCE(sup->reschedule_count, 0);
1864 	} else {
1865 		j = jiffies;
1866 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1867 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
1868 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1869 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1870 				curdelay = 1;
1871 		} else {
1872 			WRITE_ONCE(sup->reschedule_count, 1);
1873 			WRITE_ONCE(sup->reschedule_jiffies, j);
1874 		}
1875 	}
1876 	srcu_reschedule(ssp, curdelay);
1877 }
1878 
srcutorture_get_gp_data(struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)1879 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1880 			     unsigned long *gp_seq)
1881 {
1882 	*flags = 0;
1883 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1884 }
1885 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1886 
1887 static const char * const srcu_size_state_name[] = {
1888 	"SRCU_SIZE_SMALL",
1889 	"SRCU_SIZE_ALLOC",
1890 	"SRCU_SIZE_WAIT_BARRIER",
1891 	"SRCU_SIZE_WAIT_CALL",
1892 	"SRCU_SIZE_WAIT_CBS1",
1893 	"SRCU_SIZE_WAIT_CBS2",
1894 	"SRCU_SIZE_WAIT_CBS3",
1895 	"SRCU_SIZE_WAIT_CBS4",
1896 	"SRCU_SIZE_BIG",
1897 	"SRCU_SIZE_???",
1898 };
1899 
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)1900 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1901 {
1902 	int cpu;
1903 	int idx;
1904 	unsigned long s0 = 0, s1 = 0;
1905 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1906 	int ss_state_idx = ss_state;
1907 
1908 	idx = ssp->srcu_idx & 0x1;
1909 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1910 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1911 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1912 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1913 		 srcu_size_state_name[ss_state_idx]);
1914 	if (!ssp->sda) {
1915 		// Called after cleanup_srcu_struct(), perhaps.
1916 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1917 	} else {
1918 		pr_cont(" per-CPU(idx=%d):", idx);
1919 		for_each_possible_cpu(cpu) {
1920 			unsigned long l0, l1;
1921 			unsigned long u0, u1;
1922 			long c0, c1;
1923 			struct srcu_data *sdp;
1924 
1925 			sdp = per_cpu_ptr(ssp->sda, cpu);
1926 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1927 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1928 
1929 			/*
1930 			 * Make sure that a lock is always counted if the corresponding
1931 			 * unlock is counted.
1932 			 */
1933 			smp_rmb();
1934 
1935 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1936 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1937 
1938 			c0 = l0 - u0;
1939 			c1 = l1 - u1;
1940 			pr_cont(" %d(%ld,%ld %c)",
1941 				cpu, c0, c1,
1942 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1943 			s0 += c0;
1944 			s1 += c1;
1945 		}
1946 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1947 	}
1948 	if (SRCU_SIZING_IS_TORTURE())
1949 		srcu_transition_to_big(ssp);
1950 }
1951 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1952 
srcu_bootup_announce(void)1953 static int __init srcu_bootup_announce(void)
1954 {
1955 	pr_info("Hierarchical SRCU implementation.\n");
1956 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1957 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1958 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1959 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1960 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1961 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1962 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1963 	return 0;
1964 }
1965 early_initcall(srcu_bootup_announce);
1966 
srcu_init(void)1967 void __init srcu_init(void)
1968 {
1969 	struct srcu_usage *sup;
1970 
1971 	/* Decide on srcu_struct-size strategy. */
1972 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1973 		if (nr_cpu_ids >= big_cpu_lim) {
1974 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1975 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1976 		} else {
1977 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1978 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * Once that is set, call_srcu() can follow the normal path and
1984 	 * queue delayed work. This must follow RCU workqueues creation
1985 	 * and timers initialization.
1986 	 */
1987 	srcu_init_done = true;
1988 	while (!list_empty(&srcu_boot_list)) {
1989 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1990 				      work.work.entry);
1991 		list_del_init(&sup->work.work.entry);
1992 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1993 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1994 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1995 		queue_work(rcu_gp_wq, &sup->work.work);
1996 	}
1997 }
1998 
1999 #ifdef CONFIG_MODULES
2000 
2001 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)2002 static int srcu_module_coming(struct module *mod)
2003 {
2004 	int i;
2005 	struct srcu_struct *ssp;
2006 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2007 
2008 	for (i = 0; i < mod->num_srcu_structs; i++) {
2009 		ssp = *(sspp++);
2010 		ssp->sda = alloc_percpu(struct srcu_data);
2011 		if (WARN_ON_ONCE(!ssp->sda))
2012 			return -ENOMEM;
2013 	}
2014 	return 0;
2015 }
2016 
2017 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)2018 static void srcu_module_going(struct module *mod)
2019 {
2020 	int i;
2021 	struct srcu_struct *ssp;
2022 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2023 
2024 	for (i = 0; i < mod->num_srcu_structs; i++) {
2025 		ssp = *(sspp++);
2026 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2027 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2028 			cleanup_srcu_struct(ssp);
2029 		if (!WARN_ON(srcu_readers_active(ssp)))
2030 			free_percpu(ssp->sda);
2031 	}
2032 }
2033 
2034 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)2035 static int srcu_module_notify(struct notifier_block *self,
2036 			      unsigned long val, void *data)
2037 {
2038 	struct module *mod = data;
2039 	int ret = 0;
2040 
2041 	switch (val) {
2042 	case MODULE_STATE_COMING:
2043 		ret = srcu_module_coming(mod);
2044 		break;
2045 	case MODULE_STATE_GOING:
2046 		srcu_module_going(mod);
2047 		break;
2048 	default:
2049 		break;
2050 	}
2051 	return ret;
2052 }
2053 
2054 static struct notifier_block srcu_module_nb = {
2055 	.notifier_call = srcu_module_notify,
2056 	.priority = 0,
2057 };
2058 
init_srcu_module_notifier(void)2059 static __init int init_srcu_module_notifier(void)
2060 {
2061 	int ret;
2062 
2063 	ret = register_module_notifier(&srcu_module_nb);
2064 	if (ret)
2065 		pr_warn("Failed to register srcu module notifier\n");
2066 	return ret;
2067 }
2068 late_initcall(init_srcu_module_notifier);
2069 
2070 #endif /* #ifdef CONFIG_MODULES */
2071