1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/trace_processor/importers/common/clock_tracker.h"
18
19 #include <optional>
20 #include <random>
21
22 #include "src/trace_processor/importers/common/machine_tracker.h"
23 #include "src/trace_processor/importers/common/metadata_tracker.h"
24 #include "src/trace_processor/storage/trace_storage.h"
25 #include "src/trace_processor/types/trace_processor_context.h"
26 #include "test/gtest_and_gmock.h"
27
28 #include "protos/perfetto/common/builtin_clock.pbzero.h"
29 #include "protos/perfetto/trace/clock_snapshot.pbzero.h"
30
31 namespace perfetto {
32 namespace trace_processor {
33
34 class ClockTrackerTest : public ::testing::Test {
35 public:
ClockTrackerTest()36 ClockTrackerTest() {
37 context_.storage.reset(new TraceStorage());
38 context_.metadata_tracker.reset(
39 new MetadataTracker(context_.storage.get()));
40 }
41
42 // using ClockId = uint64_t;
43 TraceProcessorContext context_;
44 ClockTracker ct_{&context_};
Convert(ClockTracker::ClockId src_clock_id,int64_t src_timestamp,ClockTracker::ClockId target_clock_id)45 base::StatusOr<int64_t> Convert(ClockTracker::ClockId src_clock_id,
46 int64_t src_timestamp,
47 ClockTracker::ClockId target_clock_id) {
48 return ct_.Convert(src_clock_id, src_timestamp, target_clock_id);
49 }
50 };
51
52 namespace {
53
54 using ::testing::NiceMock;
55 using Clock = protos::pbzero::ClockSnapshot::Clock;
56
57 constexpr auto REALTIME = protos::pbzero::BUILTIN_CLOCK_REALTIME;
58 constexpr auto BOOTTIME = protos::pbzero::BUILTIN_CLOCK_BOOTTIME;
59 constexpr auto MONOTONIC = protos::pbzero::BUILTIN_CLOCK_MONOTONIC;
60 constexpr auto MONOTONIC_COARSE =
61 protos::pbzero::BUILTIN_CLOCK_MONOTONIC_COARSE;
62 constexpr auto MONOTONIC_RAW = protos::pbzero::BUILTIN_CLOCK_MONOTONIC_RAW;
63
TEST_F(ClockTrackerTest,ClockDomainConversions)64 TEST_F(ClockTrackerTest, ClockDomainConversions) {
65 EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 0).ok());
66
67 ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
68 ct_.AddSnapshot({{REALTIME, 20}, {BOOTTIME, 20220}});
69 ct_.AddSnapshot({{REALTIME, 30}, {BOOTTIME, 30030}});
70 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
71
72 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 0), 10000);
73 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 1), 10001);
74 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 9), 10009);
75 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 10), 10010);
76 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 10011);
77 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 19), 10019);
78 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 20), 20220);
79 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 21), 20221);
80 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 29), 20229);
81 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 30), 30030);
82 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 40), 30040);
83
84 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 0), 100000 - 1000);
85 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 999), 100000 - 1);
86 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1000), 100000);
87 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1e6),
88 static_cast<int64_t>(100000 - 1000 + 1e6));
89 }
90
TEST_F(ClockTrackerTest,ToTraceTimeFromSnapshot)91 TEST_F(ClockTrackerTest, ToTraceTimeFromSnapshot) {
92 EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 0).ok());
93
94 EXPECT_EQ(*ct_.ToTraceTimeFromSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}}),
95 10010);
96 EXPECT_EQ(ct_.ToTraceTimeFromSnapshot({{MONOTONIC, 10}, {REALTIME, 10010}}),
97 std::nullopt);
98 }
99
100 // When a clock moves backwards conversions *from* that clock are forbidden
101 // but conversions *to* that clock should still work.
102 // Think to the case of REALTIME going backwards from 3AM to 2AM during DST day.
103 // You can't convert 2.10AM REALTIME to BOOTTIME because there are two possible
104 // answers, but you can still unambiguosly convert BOOTTIME into REALTIME.
TEST_F(ClockTrackerTest,RealTimeClockMovingBackwards)105 TEST_F(ClockTrackerTest, RealTimeClockMovingBackwards) {
106 ct_.AddSnapshot({{BOOTTIME, 10010}, {REALTIME, 10}});
107
108 // At this point conversions are still possible in both ways because we
109 // haven't broken monotonicity yet.
110 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 10011);
111
112 ct_.AddSnapshot({{BOOTTIME, 10020}, {REALTIME, 20}});
113 ct_.AddSnapshot({{BOOTTIME, 30040}, {REALTIME, 40}});
114 ct_.AddSnapshot({{BOOTTIME, 40030}, {REALTIME, 30}});
115
116 // Now only BOOTIME -> REALTIME conversion should be possible.
117 EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 11).ok());
118 EXPECT_EQ(*Convert(BOOTTIME, 10011, REALTIME), 11);
119 EXPECT_EQ(*Convert(BOOTTIME, 10029, REALTIME), 29);
120 EXPECT_EQ(*Convert(BOOTTIME, 40030, REALTIME), 30);
121 EXPECT_EQ(*Convert(BOOTTIME, 40040, REALTIME), 40);
122
123 ct_.AddSnapshot({{BOOTTIME, 50000}, {REALTIME, 50}});
124 EXPECT_EQ(*Convert(BOOTTIME, 50005, REALTIME), 55);
125
126 ct_.AddSnapshot({{BOOTTIME, 60020}, {REALTIME, 20}});
127 EXPECT_EQ(*Convert(BOOTTIME, 60020, REALTIME), 20);
128 }
129
130 // Simulate the following scenario:
131 // MONOTONIC = MONOTONIC_COARSE + 10
132 // BOOTTIME = MONOTONIC + 1000 (until T=200)
133 // BOOTTIME = MONOTONIC + 2000 (from T=200)
134 // Then resolve MONOTONIC_COARSE. This requires a two-level resolution:
135 // MONOTONIC_COARSE -> MONOTONIC -> BOOTTIME.
TEST_F(ClockTrackerTest,ChainedResolutionSimple)136 TEST_F(ClockTrackerTest, ChainedResolutionSimple) {
137 ct_.AddSnapshot({{MONOTONIC_COARSE, 1}, {MONOTONIC, 11}});
138 ct_.AddSnapshot({{MONOTONIC, 100}, {BOOTTIME, 1100}});
139 ct_.AddSnapshot({{MONOTONIC, 200}, {BOOTTIME, 2200}});
140
141 // MONOTONIC_COARSE@100 == MONOTONIC@110 == BOOTTIME@1100.
142 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 110), 1110);
143 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 100), 100 + 10 + 1000);
144 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 202), 202 + 10 + 2000);
145 }
146
TEST_F(ClockTrackerTest,ChainedResolutionHard)147 TEST_F(ClockTrackerTest, ChainedResolutionHard) {
148 // MONOTONIC_COARSE = MONOTONIC_RAW - 1.
149 ct_.AddSnapshot({{MONOTONIC_RAW, 10}, {MONOTONIC_COARSE, 9}});
150
151 // MONOTONIC = MONOTONIC_COARSE - 50.
152 ct_.AddSnapshot({{MONOTONIC_COARSE, 100}, {MONOTONIC, 50}});
153
154 // BOOTTIME = MONOTONIC + 1000 until T=100 (see below).
155 ct_.AddSnapshot({{MONOTONIC, 1}, {BOOTTIME, 1001}, {REALTIME, 10001}});
156
157 // BOOTTIME = MONOTONIC + 2000 from T=100.
158 // At the same time, REALTIME goes backwards.
159 ct_.AddSnapshot({{MONOTONIC, 101}, {BOOTTIME, 2101}, {REALTIME, 9101}});
160
161 // 1-hop conversions.
162 EXPECT_EQ(*Convert(MONOTONIC_RAW, 2, MONOTONIC_COARSE), 1);
163 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 1, MONOTONIC_RAW), 2);
164 EXPECT_EQ(*Convert(MONOTONIC_RAW, 100001, MONOTONIC_COARSE), 100000);
165 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 100000, MONOTONIC_RAW), 100001);
166
167 // 2-hop conversions (MONOTONIC_RAW <-> MONOTONIC_COARSE <-> MONOTONIC).
168 // From above, MONOTONIC = (MONOTONIC_RAW - 1) - 50.
169 EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, MONOTONIC), 53 - 1 - 50);
170 EXPECT_EQ(*Convert(MONOTONIC, 2, MONOTONIC_RAW), 2 + 1 + 50);
171
172 // 3-hop conversions (as above + BOOTTIME)
173 EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, BOOTTIME), 53 - 1 - 50 + 1000);
174 EXPECT_EQ(*Convert(BOOTTIME, 1002, MONOTONIC_RAW), 1002 - 1000 + 1 + 50);
175
176 EXPECT_EQ(*Convert(MONOTONIC_RAW, 753, BOOTTIME), 753 - 1 - 50 + 2000);
177 EXPECT_EQ(*Convert(BOOTTIME, 2702, MONOTONIC_RAW), 2702 - 2000 + 1 + 50);
178
179 // 3-hop conversion to REALTIME, one way only (REALTIME goes backwards).
180 EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, REALTIME), 53 - 1 - 50 + 10000);
181 EXPECT_EQ(*Convert(MONOTONIC_RAW, 753, REALTIME), 753 - 1 - 50 + 9000);
182 }
183
184 // Regression test for b/158182858. When taking two snapshots back-to-back,
185 // MONOTONIC_COARSE might be stuck to the last value. We should still be able
186 // to convert both ways in this case.
TEST_F(ClockTrackerTest,NonStrictlyMonotonic)187 TEST_F(ClockTrackerTest, NonStrictlyMonotonic) {
188 ct_.AddSnapshot({{BOOTTIME, 101}, {MONOTONIC, 51}, {MONOTONIC_COARSE, 50}});
189 ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
190
191 // This last snapshot is deliberately identical to the previous one. This
192 // is to simulate the case of taking two snapshots so close to each other
193 // that all clocks are identical.
194 ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
195
196 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 49, MONOTONIC), 50);
197 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 50, MONOTONIC), 55);
198 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 51, MONOTONIC), 56);
199
200 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 40, BOOTTIME), 91);
201 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 50, BOOTTIME), 105);
202 EXPECT_EQ(*Convert(MONOTONIC_COARSE, 55, BOOTTIME), 110);
203
204 EXPECT_EQ(*Convert(BOOTTIME, 91, MONOTONIC_COARSE), 40);
205 EXPECT_EQ(*Convert(BOOTTIME, 105, MONOTONIC_COARSE), 50);
206 EXPECT_EQ(*Convert(BOOTTIME, 110, MONOTONIC_COARSE), 55);
207 }
208
TEST_F(ClockTrackerTest,SequenceScopedClocks)209 TEST_F(ClockTrackerTest, SequenceScopedClocks) {
210 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
211
212 ClockTracker::ClockId c64_1 = ct_.SequenceToGlobalClock(1, 64);
213 ClockTracker::ClockId c65_1 = ct_.SequenceToGlobalClock(1, 65);
214 ClockTracker::ClockId c66_1 = ct_.SequenceToGlobalClock(1, 66);
215 ClockTracker::ClockId c66_2 = ct_.SequenceToGlobalClock(2, 64);
216
217 ct_.AddSnapshot(
218 {{MONOTONIC, 10000},
219 {c64_1, 100000},
220 {c65_1, 100, /*unit_multiplier_ns=*/1000, /*is_incremental=*/false},
221 {c66_1, 10, /*unit_multiplier_ns=*/1000, /*is_incremental=*/true}});
222
223 // c64_1 is non-incremental and in nanos.
224 EXPECT_EQ(*Convert(c64_1, 150000, MONOTONIC), 60000);
225 EXPECT_EQ(*Convert(c64_1, 150000, BOOTTIME), 159000);
226 EXPECT_EQ(*ct_.ToTraceTime(c64_1, 150000), 159000);
227
228 // c65_1 is non-incremental and in micros.
229 EXPECT_EQ(*Convert(c65_1, 150, MONOTONIC), 60000);
230 EXPECT_EQ(*Convert(c65_1, 150, BOOTTIME), 159000);
231 EXPECT_EQ(*ct_.ToTraceTime(c65_1, 150), 159000);
232
233 // c66_1 is incremental and in micros.
234 EXPECT_EQ(*Convert(c66_1, 1 /* abs 11 */, MONOTONIC), 11000);
235 EXPECT_EQ(*Convert(c66_1, 1 /* abs 12 */, MONOTONIC), 12000);
236 EXPECT_EQ(*Convert(c66_1, 1 /* abs 13 */, BOOTTIME), 112000);
237 EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 15 */), 114000);
238
239 ct_.AddSnapshot(
240 {{MONOTONIC, 20000},
241 {c66_1, 20, /*unit_multiplier_ns=*/1000, /*incremental=*/true}});
242 ct_.AddSnapshot(
243 {{MONOTONIC, 20000},
244 {c66_2, 20, /*unit_multiplier_ns=*/1000, /*incremental=*/true}});
245
246 // c66_1 and c66_2 are both incremental and in micros, but shouldn't affect
247 // each other.
248 EXPECT_EQ(*Convert(c66_1, 1 /* abs 21 */, MONOTONIC), 21000);
249 EXPECT_EQ(*Convert(c66_2, 2 /* abs 22 */, MONOTONIC), 22000);
250 EXPECT_EQ(*Convert(c66_1, 1 /* abs 22 */, MONOTONIC), 22000);
251 EXPECT_EQ(*Convert(c66_2, 2 /* abs 24 */, MONOTONIC), 24000);
252 EXPECT_EQ(*Convert(c66_1, 1 /* abs 23 */, BOOTTIME), 122000);
253 EXPECT_EQ(*Convert(c66_2, 2 /* abs 26 */, BOOTTIME), 125000);
254 EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 25 */), 124000);
255 EXPECT_EQ(*ct_.ToTraceTime(c66_2, 4 /* abs 30 */), 129000);
256 }
257
258 // Tests that the cache doesn't affect the results of Convert() in unexpected
259 // ways.
TEST_F(ClockTrackerTest,CacheDoesntAffectResults)260 TEST_F(ClockTrackerTest, CacheDoesntAffectResults) {
261 std::minstd_rand rnd;
262 int last_mono = 0;
263 int last_boot = 0;
264 int last_raw = 0;
265 static const int increments[] = {1, 2, 10};
266 for (int i = 0; i < 1000; i++) {
267 last_mono += increments[rnd() % base::ArraySize(increments)];
268 last_boot += increments[rnd() % base::ArraySize(increments)];
269 ct_.AddSnapshot({{MONOTONIC, last_mono}, {BOOTTIME, last_boot}});
270
271 last_raw += increments[rnd() % base::ArraySize(increments)];
272 last_boot += increments[rnd() % base::ArraySize(increments)];
273 ct_.AddSnapshot({{MONOTONIC_RAW, last_raw}, {BOOTTIME, last_boot}});
274 }
275
276 for (int i = 0; i < 1000; i++) {
277 int64_t val = static_cast<int64_t>(rnd()) % 10000;
278 for (int j = 0; j < 5; j++) {
279 ClockTracker::ClockId src;
280 ClockTracker::ClockId tgt;
281 if (j == 0) {
282 std::tie(src, tgt) = std::make_tuple(MONOTONIC, BOOTTIME);
283 } else if (j == 1) {
284 std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, BOOTTIME);
285 } else if (j == 2) {
286 std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC);
287 } else if (j == 3) {
288 std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC_RAW);
289 } else if (j == 4) {
290 std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, MONOTONIC);
291 } else {
292 PERFETTO_FATAL("j out of bounds");
293 }
294 // It will still write the cache, just not lookup.
295 ct_.set_cache_lookups_disabled_for_testing(true);
296 auto not_cached = Convert(src, val, tgt);
297
298 // This should 100% hit the cache.
299 ct_.set_cache_lookups_disabled_for_testing(false);
300 auto cached = Convert(src, val, tgt);
301
302 ASSERT_EQ(not_cached.value(), cached.value());
303 }
304 }
305 }
306
307 // Test clock conversion with offset to the host.
TEST_F(ClockTrackerTest,ClockOffset)308 TEST_F(ClockTrackerTest, ClockOffset) {
309 EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 0).ok());
310
311 context_.machine_tracker =
312 std::make_unique<MachineTracker>(&context_, 0x1001);
313
314 // Client-to-host BOOTTIME offset is -10000 ns.
315 ct_.SetClockOffset(BOOTTIME, -10000);
316
317 ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
318 ct_.AddSnapshot({{REALTIME, 20}, {BOOTTIME, 20220}});
319 ct_.AddSnapshot({{REALTIME, 30}, {BOOTTIME, 30030}});
320 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
321
322 auto seq_clock_1 = ct_.SequenceToGlobalClock(1, 64);
323 auto seq_clock_2 = ct_.SequenceToGlobalClock(2, 64);
324 ct_.AddSnapshot({{MONOTONIC, 2000}, {seq_clock_1, 1200}});
325 ct_.AddSnapshot({{seq_clock_1, 1300}, {seq_clock_2, 2000, 10, false}});
326
327 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 0), 20000);
328 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 1), 20001);
329 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 9), 20009);
330 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 10), 20010);
331 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 20011);
332 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 19), 20019);
333 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 20), 30220);
334 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 21), 30221);
335 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 29), 30229);
336 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 30), 40030);
337 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 40), 40040);
338
339 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 0), 100000 - 1000 + 10000);
340 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 999), 100000 - 1 + 10000);
341 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1000), 100000 + 10000);
342 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1e6),
343 static_cast<int64_t>(100000 - 1000 + 1e6 + 10000));
344
345 // seq_clock_1 -> MONOTONIC -> BOOTTIME -> apply offset.
346 EXPECT_EQ(*ct_.ToTraceTime(seq_clock_1, 1100), -100 + 1000 + 100000 + 10000);
347 // seq_clock_2 -> seq_clock_1 -> MONOTONIC -> BOOTTIME -> apply offset.
348 EXPECT_EQ(*ct_.ToTraceTime(seq_clock_2, 2100),
349 100 * 10 + 100 + 1000 + 100000 + 10000);
350 }
351
352 // Test conversion of remote machine timestamps without offset. This can happen
353 // if timestamp conversion for remote machines is done by trace data
354 // post-processing.
TEST_F(ClockTrackerTest,RemoteNoClockOffset)355 TEST_F(ClockTrackerTest, RemoteNoClockOffset) {
356 context_.machine_tracker =
357 std::make_unique<MachineTracker>(&context_, 0x1001);
358
359 ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
360 ct_.AddSnapshot({{REALTIME, 20}, {BOOTTIME, 20220}});
361 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
362
363 auto seq_clock_1 = ct_.SequenceToGlobalClock(1, 64);
364 auto seq_clock_2 = ct_.SequenceToGlobalClock(2, 64);
365 ct_.AddSnapshot({{MONOTONIC, 2000}, {seq_clock_1, 1200}});
366 ct_.AddSnapshot({{seq_clock_1, 1300}, {seq_clock_2, 2000, 10, false}});
367
368 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 0), 10000);
369 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 9), 10009);
370 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 10), 10010);
371 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 10011);
372 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 19), 10019);
373 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 20), 20220);
374 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 21), 20221);
375
376 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 0), 100000 - 1000);
377 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 999), 100000 - 1);
378 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1000), 100000);
379 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1e6),
380 static_cast<int64_t>(100000 - 1000 + 1e6));
381
382 // seq_clock_1 -> MONOTONIC -> BOOTTIME.
383 EXPECT_EQ(*ct_.ToTraceTime(seq_clock_1, 1100), -100 + 1000 + 100000);
384 // seq_clock_2 -> seq_clock_1 -> MONOTONIC -> BOOTTIME.
385 EXPECT_EQ(*ct_.ToTraceTime(seq_clock_2, 2100),
386 100 * 10 + 100 + 1000 + 100000);
387 }
388
389 // Test clock offset of non-defualt trace time clock domain.
TEST_F(ClockTrackerTest,NonDefaultTraceTimeClock)390 TEST_F(ClockTrackerTest, NonDefaultTraceTimeClock) {
391 context_.machine_tracker =
392 std::make_unique<MachineTracker>(&context_, 0x1001);
393
394 ct_.SetTraceTimeClock(MONOTONIC);
395 ct_.SetClockOffset(MONOTONIC, -2000);
396 ct_.SetClockOffset(BOOTTIME, -10000); // This doesn't take effect.
397
398 ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
399 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
400
401 auto seq_clock_1 = ct_.SequenceToGlobalClock(1, 64);
402 ct_.AddSnapshot({{MONOTONIC, 2000}, {seq_clock_1, 1200}});
403
404 int64_t realtime_to_trace_time_delta = -10 + 10010 - 100000 + 1000 - (-2000);
405 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 9), 9 + realtime_to_trace_time_delta);
406 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 10), 10 + realtime_to_trace_time_delta);
407 EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 20), 20 + realtime_to_trace_time_delta);
408
409 int64_t mono_to_trace_time_delta = -2000;
410 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 0), 0 - mono_to_trace_time_delta);
411 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 999), 999 - mono_to_trace_time_delta);
412 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1000), 1000 - mono_to_trace_time_delta);
413 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1e6),
414 static_cast<int64_t>(1e6) - mono_to_trace_time_delta);
415
416 // seq_clock_1 -> MONOTONIC.
417 EXPECT_EQ(*ct_.ToTraceTime(seq_clock_1, 1100), 1100 - 1200 + 2000 - (-2000));
418 }
419
420 } // namespace
421 } // namespace trace_processor
422 } // namespace perfetto
423