1 //! An unbounded set of futures.
2 //!
3 //! This module is only available when the `std` or `alloc` feature of this
4 //! library is activated, and it is activated by default.
5 
6 use crate::task::AtomicWaker;
7 use alloc::sync::{Arc, Weak};
8 use core::cell::UnsafeCell;
9 use core::fmt::{self, Debug};
10 use core::iter::FromIterator;
11 use core::marker::PhantomData;
12 use core::mem;
13 use core::pin::Pin;
14 use core::ptr;
15 use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
16 use core::sync::atomic::{AtomicBool, AtomicPtr};
17 use futures_core::future::Future;
18 use futures_core::stream::{FusedStream, Stream};
19 use futures_core::task::{Context, Poll};
20 use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
21 
22 mod abort;
23 
24 mod iter;
25 #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352
26 pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef};
27 
28 mod task;
29 use self::task::Task;
30 
31 mod ready_to_run_queue;
32 use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue};
33 
34 /// A set of futures which may complete in any order.
35 ///
36 /// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this
37 /// type that preserves a FIFO order.
38 ///
39 /// This structure is optimized to manage a large number of futures.
40 /// Futures managed by [`FuturesUnordered`] will only be polled when they
41 /// generate wake-up notifications. This reduces the required amount of work
42 /// needed to poll large numbers of futures.
43 ///
44 /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an
45 /// iterator of futures into a [`FuturesUnordered`], or by
46 /// [`push`](FuturesUnordered::push)ing futures onto an existing
47 /// [`FuturesUnordered`]. When new futures are added,
48 /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving
49 /// wake-ups for new futures.
50 ///
51 /// Note that you can create a ready-made [`FuturesUnordered`] via the
52 /// [`collect`](Iterator::collect) method, or you can start with an empty set
53 /// with the [`FuturesUnordered::new`] constructor.
54 ///
55 /// This type is only available when the `std` or `alloc` feature of this
56 /// library is activated, and it is activated by default.
57 #[must_use = "streams do nothing unless polled"]
58 pub struct FuturesUnordered<Fut> {
59     ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>,
60     head_all: AtomicPtr<Task<Fut>>,
61     is_terminated: AtomicBool,
62 }
63 
64 unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {}
65 unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {}
66 impl<Fut> Unpin for FuturesUnordered<Fut> {}
67 
68 impl Spawn for FuturesUnordered<FutureObj<'_, ()>> {
spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError>69     fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> {
70         self.push(future_obj);
71         Ok(())
72     }
73 }
74 
75 impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> {
spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError>76     fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
77         self.push(future_obj);
78         Ok(())
79     }
80 }
81 
82 // FuturesUnordered is implemented using two linked lists. One which links all
83 // futures managed by a `FuturesUnordered` and one that tracks futures that have
84 // been scheduled for polling. The first linked list allows for thread safe
85 // insertion of nodes at the head as well as forward iteration, but is otherwise
86 // not thread safe and is only accessed by the thread that owns the
87 // `FuturesUnordered` value for any other operations. The second linked list is
88 // an implementation of the intrusive MPSC queue algorithm described by
89 // 1024cores.net.
90 //
91 // When a future is submitted to the set, a task is allocated and inserted in
92 // both linked lists. The next call to `poll_next` will (eventually) see this
93 // task and call `poll` on the future.
94 //
95 // Before a managed future is polled, the current context's waker is replaced
96 // with one that is aware of the specific future being run. This ensures that
97 // wake-up notifications generated by that specific future are visible to
98 // `FuturesUnordered`. When a wake-up notification is received, the task is
99 // inserted into the ready to run queue, so that its future can be polled later.
100 //
101 // Each task is wrapped in an `Arc` and thereby atomically reference counted.
102 // Also, each task contains an `AtomicBool` which acts as a flag that indicates
103 // whether the task is currently inserted in the atomic queue. When a wake-up
104 // notification is received, the task will only be inserted into the ready to
105 // run queue if it isn't inserted already.
106 
107 impl<Fut> Default for FuturesUnordered<Fut> {
default() -> Self108     fn default() -> Self {
109         Self::new()
110     }
111 }
112 
113 impl<Fut> FuturesUnordered<Fut> {
114     /// Constructs a new, empty [`FuturesUnordered`].
115     ///
116     /// The returned [`FuturesUnordered`] does not contain any futures.
117     /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will
118     /// return [`Poll::Ready(None)`](Poll::Ready).
new() -> Self119     pub fn new() -> Self {
120         let stub = Arc::new(Task {
121             future: UnsafeCell::new(None),
122             next_all: AtomicPtr::new(ptr::null_mut()),
123             prev_all: UnsafeCell::new(ptr::null()),
124             len_all: UnsafeCell::new(0),
125             next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
126             queued: AtomicBool::new(true),
127             ready_to_run_queue: Weak::new(),
128             woken: AtomicBool::new(false),
129         });
130         let stub_ptr = Arc::as_ptr(&stub);
131         let ready_to_run_queue = Arc::new(ReadyToRunQueue {
132             waker: AtomicWaker::new(),
133             head: AtomicPtr::new(stub_ptr as *mut _),
134             tail: UnsafeCell::new(stub_ptr),
135             stub,
136         });
137 
138         Self {
139             head_all: AtomicPtr::new(ptr::null_mut()),
140             ready_to_run_queue,
141             is_terminated: AtomicBool::new(false),
142         }
143     }
144 
145     /// Returns the number of futures contained in the set.
146     ///
147     /// This represents the total number of in-flight futures.
len(&self) -> usize148     pub fn len(&self) -> usize {
149         let (_, len) = self.atomic_load_head_and_len_all();
150         len
151     }
152 
153     /// Returns `true` if the set contains no futures.
is_empty(&self) -> bool154     pub fn is_empty(&self) -> bool {
155         // Relaxed ordering can be used here since we don't need to read from
156         // the head pointer, only check whether it is null.
157         self.head_all.load(Relaxed).is_null()
158     }
159 
160     /// Push a future into the set.
161     ///
162     /// This method adds the given future to the set. This method will not
163     /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
164     /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called
165     /// in order to receive wake-up notifications for the given future.
push(&self, future: Fut)166     pub fn push(&self, future: Fut) {
167         let task = Arc::new(Task {
168             future: UnsafeCell::new(Some(future)),
169             next_all: AtomicPtr::new(self.pending_next_all()),
170             prev_all: UnsafeCell::new(ptr::null_mut()),
171             len_all: UnsafeCell::new(0),
172             next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
173             queued: AtomicBool::new(true),
174             ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue),
175             woken: AtomicBool::new(false),
176         });
177 
178         // Reset the `is_terminated` flag if we've previously marked ourselves
179         // as terminated.
180         self.is_terminated.store(false, Relaxed);
181 
182         // Right now our task has a strong reference count of 1. We transfer
183         // ownership of this reference count to our internal linked list
184         // and we'll reclaim ownership through the `unlink` method below.
185         let ptr = self.link(task);
186 
187         // We'll need to get the future "into the system" to start tracking it,
188         // e.g. getting its wake-up notifications going to us tracking which
189         // futures are ready. To do that we unconditionally enqueue it for
190         // polling here.
191         self.ready_to_run_queue.enqueue(ptr);
192     }
193 
194     /// Returns an iterator that allows inspecting each future in the set.
iter(&self) -> Iter<'_, Fut> where Fut: Unpin,195     pub fn iter(&self) -> Iter<'_, Fut>
196     where
197         Fut: Unpin,
198     {
199         Iter(Pin::new(self).iter_pin_ref())
200     }
201 
202     /// Returns an iterator that allows inspecting each future in the set.
iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut>203     pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> {
204         let (task, len) = self.atomic_load_head_and_len_all();
205         let pending_next_all = self.pending_next_all();
206 
207         IterPinRef { task, len, pending_next_all, _marker: PhantomData }
208     }
209 
210     /// Returns an iterator that allows modifying each future in the set.
iter_mut(&mut self) -> IterMut<'_, Fut> where Fut: Unpin,211     pub fn iter_mut(&mut self) -> IterMut<'_, Fut>
212     where
213         Fut: Unpin,
214     {
215         IterMut(Pin::new(self).iter_pin_mut())
216     }
217 
218     /// Returns an iterator that allows modifying each future in the set.
iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut>219     pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> {
220         // `head_all` can be accessed directly and we don't need to spin on
221         // `Task::next_all` since we have exclusive access to the set.
222         let task = *self.head_all.get_mut();
223         let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
224 
225         IterPinMut { task, len, _marker: PhantomData }
226     }
227 
228     /// Returns the current head node and number of futures in the list of all
229     /// futures within a context where access is shared with other threads
230     /// (mostly for use with the `len` and `iter_pin_ref` methods).
atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize)231     fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) {
232         let task = self.head_all.load(Acquire);
233         let len = if task.is_null() {
234             0
235         } else {
236             unsafe {
237                 (*task).spin_next_all(self.pending_next_all(), Acquire);
238                 *(*task).len_all.get()
239             }
240         };
241 
242         (task, len)
243     }
244 
245     /// Releases the task. It destroys the future inside and either drops
246     /// the `Arc<Task>` or transfers ownership to the ready to run queue.
247     /// The task this method is called on must have been unlinked before.
release_task(&mut self, task: Arc<Task<Fut>>)248     fn release_task(&mut self, task: Arc<Task<Fut>>) {
249         // `release_task` must only be called on unlinked tasks
250         debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
251         unsafe {
252             debug_assert!((*task.prev_all.get()).is_null());
253         }
254 
255         // The future is done, try to reset the queued flag. This will prevent
256         // `wake` from doing any work in the future
257         let prev = task.queued.swap(true, SeqCst);
258 
259         // If the queued flag was previously set, then it means that this task
260         // is still in our internal ready to run queue. We then transfer
261         // ownership of our reference count to the ready to run queue, and it'll
262         // come along and free it later, noticing that the future is `None`.
263         //
264         // If, however, the queued flag was *not* set then we're safe to
265         // release our reference count on the task. The queued flag was set
266         // above so all future `enqueue` operations will not actually
267         // enqueue the task, so our task will never see the ready to run queue
268         // again. The task itself will be deallocated once all reference counts
269         // have been dropped elsewhere by the various wakers that contain it.
270         //
271         // Use ManuallyDrop to transfer the reference count ownership before
272         // dropping the future so unwinding won't release the reference count.
273         let md_slot;
274         let task = if prev {
275             md_slot = mem::ManuallyDrop::new(task);
276             &*md_slot
277         } else {
278             &task
279         };
280 
281         // Drop the future, even if it hasn't finished yet. This is safe
282         // because we're dropping the future on the thread that owns
283         // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and
284         // such.
285         unsafe {
286             // Set to `None` rather than `take()`ing to prevent moving the
287             // future.
288             *task.future.get() = None;
289         }
290     }
291 
292     /// Insert a new task into the internal linked list.
link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut>293     fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> {
294         // `next_all` should already be reset to the pending state before this
295         // function is called.
296         debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
297         let ptr = Arc::into_raw(task);
298 
299         // Atomically swap out the old head node to get the node that should be
300         // assigned to `next_all`.
301         let next = self.head_all.swap(ptr as *mut _, AcqRel);
302 
303         unsafe {
304             // Store the new list length in the new node.
305             let new_len = if next.is_null() {
306                 1
307             } else {
308                 // Make sure `next_all` has been written to signal that it is
309                 // safe to read `len_all`.
310                 (*next).spin_next_all(self.pending_next_all(), Acquire);
311                 *(*next).len_all.get() + 1
312             };
313             *(*ptr).len_all.get() = new_len;
314 
315             // Write the old head as the next node pointer, signaling to other
316             // threads that `len_all` and `next_all` are ready to read.
317             (*ptr).next_all.store(next, Release);
318 
319             // `prev_all` updates don't need to be synchronized, as the field is
320             // only ever used after exclusive access has been acquired.
321             if !next.is_null() {
322                 *(*next).prev_all.get() = ptr;
323             }
324         }
325 
326         ptr
327     }
328 
329     /// Remove the task from the linked list tracking all tasks currently
330     /// managed by `FuturesUnordered`.
331     /// This method is unsafe because it has be guaranteed that `task` is a
332     /// valid pointer.
unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>>333     unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> {
334         unsafe {
335             // Compute the new list length now in case we're removing the head node
336             // and won't be able to retrieve the correct length later.
337             let head = *self.head_all.get_mut();
338             debug_assert!(!head.is_null());
339             let new_len = *(*head).len_all.get() - 1;
340 
341             let task = Arc::from_raw(task);
342             let next = task.next_all.load(Relaxed);
343             let prev = *task.prev_all.get();
344             task.next_all.store(self.pending_next_all(), Relaxed);
345             *task.prev_all.get() = ptr::null_mut();
346 
347             if !next.is_null() {
348                 *(*next).prev_all.get() = prev;
349             }
350 
351             if !prev.is_null() {
352                 (*prev).next_all.store(next, Relaxed);
353             } else {
354                 *self.head_all.get_mut() = next;
355             }
356 
357             // Store the new list length in the head node.
358             let head = *self.head_all.get_mut();
359             if !head.is_null() {
360                 *(*head).len_all.get() = new_len;
361             }
362 
363             task
364         }
365     }
366 
367     /// Returns the reserved value for `Task::next_all` to indicate a pending
368     /// assignment from the thread that inserted the task.
369     ///
370     /// `FuturesUnordered::link` needs to update `Task` pointers in an order
371     /// that ensures any iterators created on other threads can correctly
372     /// traverse the entire `Task` list using the chain of `next_all` pointers.
373     /// This could be solved with a compare-exchange loop that stores the
374     /// current `head_all` in `next_all` and swaps out `head_all` with the new
375     /// `Task` pointer if the head hasn't already changed. Under heavy thread
376     /// contention, this compare-exchange loop could become costly.
377     ///
378     /// An alternative is to initialize `next_all` to a reserved pending state
379     /// first, perform an atomic swap on `head_all`, and finally update
380     /// `next_all` with the old head node. Iterators will then either see the
381     /// pending state value or the correct next node pointer, and can reload
382     /// `next_all` as needed until the correct value is loaded. The number of
383     /// retries needed (if any) would be small and will always be finite, so
384     /// this should generally perform better than the compare-exchange loop.
385     ///
386     /// A valid `Task` pointer in the `head_all` list is guaranteed to never be
387     /// this value, so it is safe to use as a reserved value until the correct
388     /// value can be written.
pending_next_all(&self) -> *mut Task<Fut>389     fn pending_next_all(&self) -> *mut Task<Fut> {
390         // The `ReadyToRunQueue` stub is never inserted into the `head_all`
391         // list, and its pointer value will remain valid for the lifetime of
392         // this `FuturesUnordered`, so we can make use of its value here.
393         Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _
394     }
395 }
396 
397 impl<Fut: Future> Stream for FuturesUnordered<Fut> {
398     type Item = Fut::Output;
399 
poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>400     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
401         let len = self.len();
402 
403         // Keep track of how many child futures we have polled,
404         // in case we want to forcibly yield.
405         let mut polled = 0;
406         let mut yielded = 0;
407 
408         // Ensure `parent` is correctly set.
409         self.ready_to_run_queue.waker.register(cx.waker());
410 
411         loop {
412             // Safety: &mut self guarantees the mutual exclusion `dequeue`
413             // expects
414             let task = match unsafe { self.ready_to_run_queue.dequeue() } {
415                 Dequeue::Empty => {
416                     if self.is_empty() {
417                         // We can only consider ourselves terminated once we
418                         // have yielded a `None`
419                         *self.is_terminated.get_mut() = true;
420                         return Poll::Ready(None);
421                     } else {
422                         return Poll::Pending;
423                     }
424                 }
425                 Dequeue::Inconsistent => {
426                     // At this point, it may be worth yielding the thread &
427                     // spinning a few times... but for now, just yield using the
428                     // task system.
429                     cx.waker().wake_by_ref();
430                     return Poll::Pending;
431                 }
432                 Dequeue::Data(task) => task,
433             };
434 
435             debug_assert!(task != self.ready_to_run_queue.stub());
436 
437             // Safety:
438             // - `task` is a valid pointer.
439             // - We are the only thread that accesses the `UnsafeCell` that
440             //   contains the future
441             let future = match unsafe { &mut *(*task).future.get() } {
442                 Some(future) => future,
443 
444                 // If the future has already gone away then we're just
445                 // cleaning out this task. See the comment in
446                 // `release_task` for more information, but we're basically
447                 // just taking ownership of our reference count here.
448                 None => {
449                     // This case only happens when `release_task` was called
450                     // for this task before and couldn't drop the task
451                     // because it was already enqueued in the ready to run
452                     // queue.
453 
454                     // Safety: `task` is a valid pointer
455                     let task = unsafe { Arc::from_raw(task) };
456 
457                     // Double check that the call to `release_task` really
458                     // happened. Calling it required the task to be unlinked.
459                     debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
460                     unsafe {
461                         debug_assert!((*task.prev_all.get()).is_null());
462                     }
463                     continue;
464                 }
465             };
466 
467             // Safety: `task` is a valid pointer
468             let task = unsafe { self.unlink(task) };
469 
470             // Unset queued flag: This must be done before polling to ensure
471             // that the future's task gets rescheduled if it sends a wake-up
472             // notification **during** the call to `poll`.
473             let prev = task.queued.swap(false, SeqCst);
474             assert!(prev);
475 
476             // We're going to need to be very careful if the `poll`
477             // method below panics. We need to (a) not leak memory and
478             // (b) ensure that we still don't have any use-after-frees. To
479             // manage this we do a few things:
480             //
481             // * A "bomb" is created which if dropped abnormally will call
482             //   `release_task`. That way we'll be sure the memory management
483             //   of the `task` is managed correctly. In particular
484             //   `release_task` will drop the future. This ensures that it is
485             //   dropped on this thread and not accidentally on a different
486             //   thread (bad).
487             // * We unlink the task from our internal queue to preemptively
488             //   assume it'll panic, in which case we'll want to discard it
489             //   regardless.
490             struct Bomb<'a, Fut> {
491                 queue: &'a mut FuturesUnordered<Fut>,
492                 task: Option<Arc<Task<Fut>>>,
493             }
494 
495             impl<Fut> Drop for Bomb<'_, Fut> {
496                 fn drop(&mut self) {
497                     if let Some(task) = self.task.take() {
498                         self.queue.release_task(task);
499                     }
500                 }
501             }
502 
503             let mut bomb = Bomb { task: Some(task), queue: &mut *self };
504 
505             // Poll the underlying future with the appropriate waker
506             // implementation. This is where a large bit of the unsafety
507             // starts to stem from internally. The waker is basically just
508             // our `Arc<Task<Fut>>` and can schedule the future for polling by
509             // enqueuing itself in the ready to run queue.
510             //
511             // Critically though `Task<Fut>` won't actually access `Fut`, the
512             // future, while it's floating around inside of wakers.
513             // These structs will basically just use `Fut` to size
514             // the internal allocation, appropriately accessing fields and
515             // deallocating the task if need be.
516             let res = {
517                 let task = bomb.task.as_ref().unwrap();
518                 // We are only interested in whether the future is awoken before it
519                 // finishes polling, so reset the flag here.
520                 task.woken.store(false, Relaxed);
521                 // SAFETY: see the comments of Bomb and this block.
522                 let waker = unsafe { Task::waker_ref(task) };
523                 let mut cx = Context::from_waker(&waker);
524 
525                 // Safety: We won't move the future ever again
526                 let future = unsafe { Pin::new_unchecked(future) };
527 
528                 future.poll(&mut cx)
529             };
530             polled += 1;
531 
532             match res {
533                 Poll::Pending => {
534                     let task = bomb.task.take().unwrap();
535                     // If the future was awoken during polling, we assume
536                     // the future wanted to explicitly yield.
537                     yielded += task.woken.load(Relaxed) as usize;
538                     bomb.queue.link(task);
539 
540                     // If a future yields, we respect it and yield here.
541                     // If all futures have been polled, we also yield here to
542                     // avoid starving other tasks waiting on the executor.
543                     // (polling the same future twice per iteration may cause
544                     // the problem: https://github.com/rust-lang/futures-rs/pull/2333)
545                     if yielded >= 2 || polled == len {
546                         cx.waker().wake_by_ref();
547                         return Poll::Pending;
548                     }
549                     continue;
550                 }
551                 Poll::Ready(output) => return Poll::Ready(Some(output)),
552             }
553         }
554     }
555 
size_hint(&self) -> (usize, Option<usize>)556     fn size_hint(&self) -> (usize, Option<usize>) {
557         let len = self.len();
558         (len, Some(len))
559     }
560 }
561 
562 impl<Fut> Debug for FuturesUnordered<Fut> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result563     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
564         write!(f, "FuturesUnordered {{ ... }}")
565     }
566 }
567 
568 impl<Fut> FuturesUnordered<Fut> {
569     /// Clears the set, removing all futures.
clear(&mut self)570     pub fn clear(&mut self) {
571         *self = Self::new();
572     }
573 }
574 
575 impl<Fut> Drop for FuturesUnordered<Fut> {
drop(&mut self)576     fn drop(&mut self) {
577         // Before the strong reference to the queue is dropped we need all
578         // futures to be dropped. See note at the bottom of this method.
579         //
580         // If there is a panic before this completes, we leak the queue.
581         struct LeakQueueOnDrop<'a, Fut>(&'a mut FuturesUnordered<Fut>);
582         impl<Fut> Drop for LeakQueueOnDrop<'_, Fut> {
583             fn drop(&mut self) {
584                 mem::forget(Arc::clone(&self.0.ready_to_run_queue));
585             }
586         }
587         let guard = LeakQueueOnDrop(self);
588         // When a `FuturesUnordered` is dropped we want to drop all futures
589         // associated with it. At the same time though there may be tons of
590         // wakers flying around which contain `Task<Fut>` references
591         // inside them. We'll let those naturally get deallocated.
592         while !guard.0.head_all.get_mut().is_null() {
593             let head = *guard.0.head_all.get_mut();
594             let task = unsafe { guard.0.unlink(head) };
595             guard.0.release_task(task);
596         }
597         mem::forget(guard); // safe to release strong reference to queue
598 
599         // Note that at this point we could still have a bunch of tasks in the
600         // ready to run queue. None of those tasks, however, have futures
601         // associated with them so they're safe to destroy on any thread. At
602         // this point the `FuturesUnordered` struct, the owner of the one strong
603         // reference to the ready to run queue will drop the strong reference.
604         // At that point whichever thread releases the strong refcount last (be
605         // it this thread or some other thread as part of an `upgrade`) will
606         // clear out the ready to run queue and free all remaining tasks.
607         //
608         // While that freeing operation isn't guaranteed to happen here, it's
609         // guaranteed to happen "promptly" as no more "blocking work" will
610         // happen while there's a strong refcount held.
611     }
612 }
613 
614 impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> {
615     type Item = &'a Fut;
616     type IntoIter = Iter<'a, Fut>;
617 
into_iter(self) -> Self::IntoIter618     fn into_iter(self) -> Self::IntoIter {
619         self.iter()
620     }
621 }
622 
623 impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> {
624     type Item = &'a mut Fut;
625     type IntoIter = IterMut<'a, Fut>;
626 
into_iter(self) -> Self::IntoIter627     fn into_iter(self) -> Self::IntoIter {
628         self.iter_mut()
629     }
630 }
631 
632 impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> {
633     type Item = Fut;
634     type IntoIter = IntoIter<Fut>;
635 
into_iter(mut self) -> Self::IntoIter636     fn into_iter(mut self) -> Self::IntoIter {
637         // `head_all` can be accessed directly and we don't need to spin on
638         // `Task::next_all` since we have exclusive access to the set.
639         let task = *self.head_all.get_mut();
640         let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
641 
642         IntoIter { len, inner: self }
643     }
644 }
645 
646 impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> {
from_iter<I>(iter: I) -> Self where I: IntoIterator<Item = Fut>,647     fn from_iter<I>(iter: I) -> Self
648     where
649         I: IntoIterator<Item = Fut>,
650     {
651         let acc = Self::new();
652         iter.into_iter().fold(acc, |acc, item| {
653             acc.push(item);
654             acc
655         })
656     }
657 }
658 
659 impl<Fut: Future> FusedStream for FuturesUnordered<Fut> {
is_terminated(&self) -> bool660     fn is_terminated(&self) -> bool {
661         self.is_terminated.load(Relaxed)
662     }
663 }
664 
665 impl<Fut> Extend<Fut> for FuturesUnordered<Fut> {
extend<I>(&mut self, iter: I) where I: IntoIterator<Item = Fut>,666     fn extend<I>(&mut self, iter: I)
667     where
668         I: IntoIterator<Item = Fut>,
669     {
670         for item in iter {
671             self.push(item);
672         }
673     }
674 }
675