xref: /nrf52832-nimble/rt-thread/components/dfs/filesystems/jffs2/src/scan.c (revision 104654410c56c573564690304ae786df310c91fc)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <[email protected]>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: scan.c,v 1.121 2005/07/20 15:32:28 dedekind Exp $
11  *
12  */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include "nodelist.h"
21 
22 #define DEFAULT_EMPTY_SCAN_SIZE 1024
23 
24 #if defined (__GNUC__)
25 #elif defined (MSVC)
26 #define typeof(x)  uint32_t
27 #else
28 #endif
29 
30 #define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
31 		c->free_size -= _x; c->dirty_size += _x; \
32 		jeb->free_size -= _x ; jeb->dirty_size += _x; \
33 		}while(0)
34 #define USED_SPACE(x) do { typeof(x) _x = (x); \
35 		c->free_size -= _x; c->used_size += _x; \
36 		jeb->free_size -= _x ; jeb->used_size += _x; \
37 		}while(0)
38 #define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
39 		c->free_size -= _x; c->unchecked_size += _x; \
40 		jeb->free_size -= _x ; jeb->unchecked_size += _x; \
41 		}while(0)
42 
43 #if defined (__GNUC__)
44 #define noisy_printk(noise, args...) do { \
45 	if (*(noise)) { \
46 		printk(KERN_NOTICE args); \
47 		 (*(noise))--; \
48 		 if (!(*(noise))) { \
49 			 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
50 		 } \
51 	} \
52 } while(0)
53 #elif defined (MSVC)
54 #define noisy_printk(noise, ...) do { \
55 	if (*(noise)) { \
56 		printk(KERN_NOTICE ##__VA_ARGS__); \
57 		 (*(noise))--; \
58 		 if (!(*(noise))) { \
59 			 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
60 		 } \
61 	} \
62 } while(0)
63 #else
64 #endif
65 
66 static uint32_t pseudo_random;
67 
68 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
69 				  unsigned char *buf, uint32_t buf_size);
70 
71 /* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
72  * Returning an error will abort the mount - bad checksums etc. should just mark the space
73  * as dirty.
74  */
75 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
76 				 struct jffs2_raw_inode *ri, uint32_t ofs);
77 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
78 				 struct jffs2_raw_dirent *rd, uint32_t ofs);
79 
80 #define BLK_STATE_ALLFF		0
81 #define BLK_STATE_CLEAN		1
82 #define BLK_STATE_PARTDIRTY	2
83 #define BLK_STATE_CLEANMARKER	3
84 #define BLK_STATE_ALLDIRTY	4
85 #define BLK_STATE_BADBLOCK	5
86 
min_free(struct jffs2_sb_info * c)87 static inline int min_free(struct jffs2_sb_info *c)
88 {
89 	uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
90 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
91 	if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
92 		return c->wbuf_pagesize;
93 #endif
94 	return min;
95 
96 }
97 
EMPTY_SCAN_SIZE(uint32_t sector_size)98 static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
99 	if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
100 		return sector_size;
101 	else
102 		return DEFAULT_EMPTY_SCAN_SIZE;
103 }
104 
jffs2_scan_medium(struct jffs2_sb_info * c)105 int jffs2_scan_medium(struct jffs2_sb_info *c)
106 {
107 	int i, ret;
108 	uint32_t empty_blocks = 0, bad_blocks = 0;
109 	unsigned char *flashbuf = NULL;
110 	uint32_t buf_size = 0;
111 #ifndef __ECOS
112 	size_t pointlen;
113 
114 	if (c->mtd->point) {
115 		ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
116 		if (!ret && pointlen < c->mtd->size) {
117 			/* Don't muck about if it won't let us point to the whole flash */
118 			D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
119 			c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
120 			flashbuf = NULL;
121 		}
122 		if (ret)
123 			D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
124 	}
125 #endif
126 	if (!flashbuf) {
127 		/* For NAND it's quicker to read a whole eraseblock at a time,
128 		   apparently */
129 		if (jffs2_cleanmarker_oob(c))
130 			buf_size = c->sector_size;
131 		else
132 			buf_size = PAGE_SIZE;
133 
134 		/* Respect kmalloc limitations */
135 		if (buf_size > 128*1024)
136 			buf_size = 128*1024;
137 
138 		D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
139 		flashbuf = kmalloc(buf_size, GFP_KERNEL);
140 		if (!flashbuf)
141 			return -ENOMEM;
142 	}
143 
144 	for (i=0; i<c->nr_blocks; i++) {
145 		struct jffs2_eraseblock *jeb = &c->blocks[i];
146 
147 		ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
148 
149 		if (ret < 0)
150 			goto out;
151 
152 		jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
153 
154 		/* Now decide which list to put it on */
155 		switch(ret) {
156 		case BLK_STATE_ALLFF:
157 			/*
158 			 * Empty block.   Since we can't be sure it
159 			 * was entirely erased, we just queue it for erase
160 			 * again.  It will be marked as such when the erase
161 			 * is complete.  Meanwhile we still count it as empty
162 			 * for later checks.
163 			 */
164 			empty_blocks++;
165 			list_add(&jeb->list, &c->erase_pending_list);
166 			c->nr_erasing_blocks++;
167 			break;
168 
169 		case BLK_STATE_CLEANMARKER:
170 			/* Only a CLEANMARKER node is valid */
171 			if (!jeb->dirty_size) {
172 				/* It's actually free */
173 				list_add(&jeb->list, &c->free_list);
174 				c->nr_free_blocks++;
175 			} else {
176 				/* Dirt */
177 				D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
178 				list_add(&jeb->list, &c->erase_pending_list);
179 				c->nr_erasing_blocks++;
180 			}
181 			break;
182 
183 		case BLK_STATE_CLEAN:
184                         /* Full (or almost full) of clean data. Clean list */
185                         list_add(&jeb->list, &c->clean_list);
186 			break;
187 
188 		case BLK_STATE_PARTDIRTY:
189                         /* Some data, but not full. Dirty list. */
190                         /* We want to remember the block with most free space
191                            and stick it in the 'nextblock' position to start writing to it. */
192                         if (jeb->free_size > min_free(c) &&
193 			    (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
194                                 /* Better candidate for the next writes to go to */
195                                 if (c->nextblock) {
196 					c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
197 					c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
198 					c->free_size -= c->nextblock->free_size;
199 					c->wasted_size -= c->nextblock->wasted_size;
200 					c->nextblock->free_size = c->nextblock->wasted_size = 0;
201 					if (VERYDIRTY(c, c->nextblock->dirty_size)) {
202 						list_add(&c->nextblock->list, &c->very_dirty_list);
203 					} else {
204 						list_add(&c->nextblock->list, &c->dirty_list);
205 					}
206 				}
207                                 c->nextblock = jeb;
208                         } else {
209 				jeb->dirty_size += jeb->free_size + jeb->wasted_size;
210 				c->dirty_size += jeb->free_size + jeb->wasted_size;
211 				c->free_size -= jeb->free_size;
212 				c->wasted_size -= jeb->wasted_size;
213 				jeb->free_size = jeb->wasted_size = 0;
214 				if (VERYDIRTY(c, jeb->dirty_size)) {
215 					list_add(&jeb->list, &c->very_dirty_list);
216 				} else {
217 					list_add(&jeb->list, &c->dirty_list);
218 				}
219                         }
220 			break;
221 
222 		case BLK_STATE_ALLDIRTY:
223 			/* Nothing valid - not even a clean marker. Needs erasing. */
224                         /* For now we just put it on the erasing list. We'll start the erases later */
225 			D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
226                         list_add(&jeb->list, &c->erase_pending_list);
227 			c->nr_erasing_blocks++;
228 			break;
229 
230 		case BLK_STATE_BADBLOCK:
231 			D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
232                         list_add(&jeb->list, &c->bad_list);
233 			c->bad_size += c->sector_size;
234 			c->free_size -= c->sector_size;
235 			bad_blocks++;
236 			break;
237 		default:
238 			printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
239 			BUG();
240 		}
241 	}
242 
243 	/* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
244 	if (c->nextblock && (c->nextblock->dirty_size)) {
245 		c->nextblock->wasted_size += c->nextblock->dirty_size;
246 		c->wasted_size += c->nextblock->dirty_size;
247 		c->dirty_size -= c->nextblock->dirty_size;
248 		c->nextblock->dirty_size = 0;
249 	}
250 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
251 	if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
252 		/* If we're going to start writing into a block which already
253 		   contains data, and the end of the data isn't page-aligned,
254 		   skip a little and align it. */
255 
256 		uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
257 
258 		D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
259 			  skip));
260 		c->nextblock->wasted_size += skip;
261 		c->wasted_size += skip;
262 
263 		c->nextblock->free_size -= skip;
264 		c->free_size -= skip;
265 	}
266 #endif
267 	if (c->nr_erasing_blocks) {
268 		if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
269 			printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
270 			printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
271 			ret = -EIO;
272 			goto out;
273 		}
274 		jffs2_erase_pending_trigger(c);
275 	}
276 	ret = 0;
277  out:
278 	if (buf_size)
279 		kfree(flashbuf);
280 #ifndef __ECOS
281 	else
282 		c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
283 #endif
284 	return ret;
285 }
286 
jffs2_fill_scan_buf(struct jffs2_sb_info * c,unsigned char * buf,uint32_t ofs,uint32_t len)287 static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
288 				uint32_t ofs, uint32_t len)
289 {
290 	int ret;
291 	size_t retlen;
292 
293 	ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
294 	if (ret) {
295 		D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
296 		return ret;
297 	}
298 	if (retlen < len) {
299 		D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
300 		return -EIO;
301 	}
302 	D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
303 	D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
304 		  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
305 	return 0;
306 }
307 
jffs2_scan_eraseblock(struct jffs2_sb_info * c,struct jffs2_eraseblock * jeb,unsigned char * buf,uint32_t buf_size)308 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
309 				  unsigned char *buf, uint32_t buf_size) {
310 	struct jffs2_unknown_node *node;
311 	struct jffs2_unknown_node crcnode;
312 	uint32_t ofs, prevofs;
313 	uint32_t hdr_crc, buf_ofs, buf_len;
314 	int err;
315 	int noise = 0;
316 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
317 	int cleanmarkerfound = 0;
318 #endif
319 
320 	ofs = jeb->offset;
321 	prevofs = jeb->offset - 1;
322 
323 	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
324 
325 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
326 	if (jffs2_cleanmarker_oob(c)) {
327 		int ret = jffs2_check_nand_cleanmarker(c, jeb);
328 		D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
329 		/* Even if it's not found, we still scan to see
330 		   if the block is empty. We use this information
331 		   to decide whether to erase it or not. */
332 		switch (ret) {
333 		case 0:		cleanmarkerfound = 1; break;
334 		case 1: 	break;
335 		case 2: 	return BLK_STATE_BADBLOCK;
336 		case 3:		return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
337 		default: 	return ret;
338 		}
339 	}
340 #endif
341 	buf_ofs = jeb->offset;
342 
343 	if (!buf_size) {
344 		buf_len = c->sector_size;
345 	} else {
346 		buf_len = EMPTY_SCAN_SIZE(c->sector_size);
347 		err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
348 		if (err)
349 			return err;
350 	}
351 
352 	/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
353 	ofs = 0;
354 
355 	/* Scan only 4KiB of 0xFF before declaring it's empty */
356 	while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
357 		ofs += 4;
358 
359 	if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
360 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
361 		if (jffs2_cleanmarker_oob(c)) {
362 			/* scan oob, take care of cleanmarker */
363 			int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
364 			D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
365 			switch (ret) {
366 			case 0:		return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
367 			case 1: 	return BLK_STATE_ALLDIRTY;
368 			default: 	return ret;
369 			}
370 		}
371 #endif
372 		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
373 		if (c->cleanmarker_size == 0)
374 			return BLK_STATE_CLEANMARKER;	/* don't bother with re-erase */
375 		else
376 			return BLK_STATE_ALLFF;	/* OK to erase if all blocks are like this */
377 	}
378 	if (ofs) {
379 		D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
380 			  jeb->offset + ofs));
381 		DIRTY_SPACE(ofs);
382 	}
383 
384 	/* Now ofs is a complete physical flash offset as it always was... */
385 	ofs += jeb->offset;
386 
387 	noise = 10;
388 
389 scan_more:
390 	while(ofs < jeb->offset + c->sector_size) {
391 
392 		jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
393 
394 		cond_resched();
395 
396 		if (ofs & 3) {
397 			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
398 			ofs = PAD(ofs);
399 			continue;
400 		}
401 		if (ofs == prevofs) {
402 			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
403 			DIRTY_SPACE(4);
404 			ofs += 4;
405 			continue;
406 		}
407 		prevofs = ofs;
408 
409 		if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
410 			D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
411 				  jeb->offset, c->sector_size, ofs, sizeof(*node)));
412 			DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
413 			break;
414 		}
415 
416 		if (buf_ofs + buf_len < ofs + sizeof(*node)) {
417 			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
418 			D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
419 				  sizeof(struct jffs2_unknown_node), buf_len, ofs));
420 			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
421 			if (err)
422 				return err;
423 			buf_ofs = ofs;
424 		}
425 
426 		node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
427 
428 		if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
429 			uint32_t inbuf_ofs;
430 			uint32_t empty_start;
431 
432 			empty_start = ofs;
433 			ofs += 4;
434 
435 			D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
436 		more_empty:
437 			inbuf_ofs = ofs - buf_ofs;
438 			while (inbuf_ofs < buf_len) {
439 				if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
440 					printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
441 					       empty_start, ofs);
442 					DIRTY_SPACE(ofs-empty_start);
443 					goto scan_more;
444 				}
445 
446 				inbuf_ofs+=4;
447 				ofs += 4;
448 			}
449 			/* Ran off end. */
450 			D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
451 
452 			/* If we're only checking the beginning of a block with a cleanmarker,
453 			   bail now */
454 			if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
455 			    c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_phys) {
456 				D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
457 				return BLK_STATE_CLEANMARKER;
458 			}
459 
460 			/* See how much more there is to read in this eraseblock... */
461 			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
462 			if (!buf_len) {
463 				/* No more to read. Break out of main loop without marking
464 				   this range of empty space as dirty (because it's not) */
465 				D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
466 					  empty_start));
467 				break;
468 			}
469 			D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
470 			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
471 			if (err)
472 				return err;
473 			buf_ofs = ofs;
474 			goto more_empty;
475 		}
476 
477 		if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
478 			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
479 			DIRTY_SPACE(4);
480 			ofs += 4;
481 			continue;
482 		}
483 		if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
484 			D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
485 			DIRTY_SPACE(4);
486 			ofs += 4;
487 			continue;
488 		}
489 		if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
490 			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
491 			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
492 			DIRTY_SPACE(4);
493 			ofs += 4;
494 			continue;
495 		}
496 		if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
497 			/* OK. We're out of possibilities. Whinge and move on */
498 			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
499 				     JFFS2_MAGIC_BITMASK, ofs,
500 				     je16_to_cpu(node->magic));
501 			DIRTY_SPACE(4);
502 			ofs += 4;
503 			continue;
504 		}
505 		/* We seem to have a node of sorts. Check the CRC */
506 		crcnode.magic = node->magic;
507 		crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
508 		crcnode.totlen = node->totlen;
509 		hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
510 
511 		if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
512 			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
513 				     ofs, je16_to_cpu(node->magic),
514 				     je16_to_cpu(node->nodetype),
515 				     je32_to_cpu(node->totlen),
516 				     je32_to_cpu(node->hdr_crc),
517 				     hdr_crc);
518 			DIRTY_SPACE(4);
519 			ofs += 4;
520 			continue;
521 		}
522 
523 		if (ofs + je32_to_cpu(node->totlen) >
524 		    jeb->offset + c->sector_size) {
525 			/* Eep. Node goes over the end of the erase block. */
526 			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
527 			       ofs, je32_to_cpu(node->totlen));
528 			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
529 			DIRTY_SPACE(4);
530 			ofs += 4;
531 			continue;
532 		}
533 
534 		if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
535 			/* Wheee. This is an obsoleted node */
536 			D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
537 			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
538 			ofs += PAD(je32_to_cpu(node->totlen));
539 			continue;
540 		}
541 
542 		switch(je16_to_cpu(node->nodetype)) {
543 		case JFFS2_NODETYPE_INODE:
544 			if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
545 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
546 				D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
547 					  sizeof(struct jffs2_raw_inode), buf_len, ofs));
548 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
549 				if (err)
550 					return err;
551 				buf_ofs = ofs;
552 				node = (void *)buf;
553 			}
554 			err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
555 			if (err) return err;
556 			ofs += PAD(je32_to_cpu(node->totlen));
557 			break;
558 
559 		case JFFS2_NODETYPE_DIRENT:
560 			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
561 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
562 				D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
563 					  je32_to_cpu(node->totlen), buf_len, ofs));
564 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
565 				if (err)
566 					return err;
567 				buf_ofs = ofs;
568 				node = (void *)buf;
569 			}
570 			err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
571 			if (err) return err;
572 			ofs += PAD(je32_to_cpu(node->totlen));
573 			break;
574 
575 		case JFFS2_NODETYPE_CLEANMARKER:
576 			D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
577 			if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
578 				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
579 				       ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
580 				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
581 				ofs += PAD(sizeof(struct jffs2_unknown_node));
582 			} else if (jeb->first_node) {
583 				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
584 				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
585 				ofs += PAD(sizeof(struct jffs2_unknown_node));
586 			} else {
587 				struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
588 				if (!marker_ref) {
589 					printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
590 					return -ENOMEM;
591 				}
592 				marker_ref->next_in_ino = NULL;
593 				marker_ref->next_phys = NULL;
594 				marker_ref->flash_offset = ofs | REF_NORMAL;
595 				marker_ref->__totlen = c->cleanmarker_size;
596 				jeb->first_node = jeb->last_node = marker_ref;
597 
598 				USED_SPACE(PAD(c->cleanmarker_size));
599 				ofs += PAD(c->cleanmarker_size);
600 			}
601 			break;
602 
603 		case JFFS2_NODETYPE_PADDING:
604 			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
605 			ofs += PAD(je32_to_cpu(node->totlen));
606 			break;
607 
608 		default:
609 			switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
610 			case JFFS2_FEATURE_ROCOMPAT:
611 				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
612 			        c->flags |= JFFS2_SB_FLAG_RO;
613 				if (!(jffs2_is_readonly(c)))
614 					return -EROFS;
615 				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
616 				ofs += PAD(je32_to_cpu(node->totlen));
617 				break;
618 
619 			case JFFS2_FEATURE_INCOMPAT:
620 				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
621 				return -EINVAL;
622 
623 			case JFFS2_FEATURE_RWCOMPAT_DELETE:
624 				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
625 				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
626 				ofs += PAD(je32_to_cpu(node->totlen));
627 				break;
628 
629 			case JFFS2_FEATURE_RWCOMPAT_COPY:
630 				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
631 				USED_SPACE(PAD(je32_to_cpu(node->totlen)));
632 				ofs += PAD(je32_to_cpu(node->totlen));
633 				break;
634 			}
635 		}
636 	}
637 
638 
639 	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
640 		  jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
641 
642 	/* mark_node_obsolete can add to wasted !! */
643 	if (jeb->wasted_size) {
644 		jeb->dirty_size += jeb->wasted_size;
645 		c->dirty_size += jeb->wasted_size;
646 		c->wasted_size -= jeb->wasted_size;
647 		jeb->wasted_size = 0;
648 	}
649 
650 	if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
651 		&& (!jeb->first_node || !jeb->first_node->next_phys) )
652 		return BLK_STATE_CLEANMARKER;
653 
654 	/* move blocks with max 4 byte dirty space to cleanlist */
655 	else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
656 		c->dirty_size -= jeb->dirty_size;
657 		c->wasted_size += jeb->dirty_size;
658 		jeb->wasted_size += jeb->dirty_size;
659 		jeb->dirty_size = 0;
660 		return BLK_STATE_CLEAN;
661 	} else if (jeb->used_size || jeb->unchecked_size)
662 		return BLK_STATE_PARTDIRTY;
663 	else
664 		return BLK_STATE_ALLDIRTY;
665 }
666 
jffs2_scan_make_ino_cache(struct jffs2_sb_info * c,uint32_t ino)667 static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
668 {
669 	struct jffs2_inode_cache *ic;
670 
671 	ic = jffs2_get_ino_cache(c, ino);
672 	if (ic)
673 		return ic;
674 
675 	if (ino > c->highest_ino)
676 		c->highest_ino = ino;
677 
678 	ic = jffs2_alloc_inode_cache();
679 	if (!ic) {
680 		printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
681 		return NULL;
682 	}
683 	memset(ic, 0, sizeof(*ic));
684 
685 	ic->ino = ino;
686 	ic->nodes = (void *)ic;
687 	jffs2_add_ino_cache(c, ic);
688 	if (ino == 1)
689 		ic->nlink = 1;
690 	return ic;
691 }
692 
jffs2_scan_inode_node(struct jffs2_sb_info * c,struct jffs2_eraseblock * jeb,struct jffs2_raw_inode * ri,uint32_t ofs)693 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
694 				 struct jffs2_raw_inode *ri, uint32_t ofs)
695 {
696 	struct jffs2_raw_node_ref *raw;
697 	struct jffs2_inode_cache *ic;
698 	uint32_t ino = je32_to_cpu(ri->ino);
699 
700 	D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
701 
702 	/* We do very little here now. Just check the ino# to which we should attribute
703 	   this node; we can do all the CRC checking etc. later. There's a tradeoff here --
704 	   we used to scan the flash once only, reading everything we want from it into
705 	   memory, then building all our in-core data structures and freeing the extra
706 	   information. Now we allow the first part of the mount to complete a lot quicker,
707 	   but we have to go _back_ to the flash in order to finish the CRC checking, etc.
708 	   Which means that the _full_ amount of time to get to proper write mode with GC
709 	   operational may actually be _longer_ than before. Sucks to be me. */
710 
711 	raw = jffs2_alloc_raw_node_ref();
712 	if (!raw) {
713 		printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
714 		return -ENOMEM;
715 	}
716 
717 	ic = jffs2_get_ino_cache(c, ino);
718 	if (!ic) {
719 		/* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
720 		   first node we found for this inode. Do a CRC check to protect against the former
721 		   case */
722 		uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
723 
724 		if (crc != je32_to_cpu(ri->node_crc)) {
725 			printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
726 			       ofs, je32_to_cpu(ri->node_crc), crc);
727 			/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
728 			DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
729 			jffs2_free_raw_node_ref(raw);
730 			return 0;
731 		}
732 		ic = jffs2_scan_make_ino_cache(c, ino);
733 		if (!ic) {
734 			jffs2_free_raw_node_ref(raw);
735 			return -ENOMEM;
736 		}
737 	}
738 
739 	/* Wheee. It worked */
740 
741 	raw->flash_offset = ofs | REF_UNCHECKED;
742 	raw->__totlen = PAD(je32_to_cpu(ri->totlen));
743 	raw->next_phys = NULL;
744 	raw->next_in_ino = ic->nodes;
745 
746 	ic->nodes = raw;
747 	if (!jeb->first_node)
748 		jeb->first_node = raw;
749 	if (jeb->last_node)
750 		jeb->last_node->next_phys = raw;
751 	jeb->last_node = raw;
752 
753 	D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
754 		  je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
755 		  je32_to_cpu(ri->offset),
756 		  je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
757 
758 	pseudo_random += je32_to_cpu(ri->version);
759 
760 	UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
761 	return 0;
762 }
763 
jffs2_scan_dirent_node(struct jffs2_sb_info * c,struct jffs2_eraseblock * jeb,struct jffs2_raw_dirent * rd,uint32_t ofs)764 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
765 				  struct jffs2_raw_dirent *rd, uint32_t ofs)
766 {
767 	struct jffs2_raw_node_ref *raw;
768 	struct jffs2_full_dirent *fd;
769 	struct jffs2_inode_cache *ic;
770 	uint32_t crc;
771 
772 	D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
773 
774 	/* We don't get here unless the node is still valid, so we don't have to
775 	   mask in the ACCURATE bit any more. */
776 	crc = crc32(0, rd, sizeof(*rd)-8);
777 
778 	if (crc != je32_to_cpu(rd->node_crc)) {
779 		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
780 		       ofs, je32_to_cpu(rd->node_crc), crc);
781 		/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
782 		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
783 		return 0;
784 	}
785 
786 	pseudo_random += je32_to_cpu(rd->version);
787 
788 	fd = jffs2_alloc_full_dirent(rd->nsize+1);
789 	if (!fd) {
790 		return -ENOMEM;
791 	}
792 	memcpy(&fd->name, rd->name, rd->nsize);
793 	fd->name[rd->nsize] = 0;
794 
795 	crc = crc32(0, fd->name, rd->nsize);
796 	if (crc != je32_to_cpu(rd->name_crc)) {
797 		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
798 		       ofs, je32_to_cpu(rd->name_crc), crc);
799 		D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
800 		jffs2_free_full_dirent(fd);
801 		/* FIXME: Why do we believe totlen? */
802 		/* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
803 		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
804 		return 0;
805 	}
806 	raw = jffs2_alloc_raw_node_ref();
807 	if (!raw) {
808 		jffs2_free_full_dirent(fd);
809 		printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
810 		return -ENOMEM;
811 	}
812 	ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
813 	if (!ic) {
814 		jffs2_free_full_dirent(fd);
815 		jffs2_free_raw_node_ref(raw);
816 		return -ENOMEM;
817 	}
818 
819 	raw->__totlen = PAD(je32_to_cpu(rd->totlen));
820 	raw->flash_offset = ofs | REF_PRISTINE;
821 	raw->next_phys = NULL;
822 	raw->next_in_ino = ic->nodes;
823 	ic->nodes = raw;
824 	if (!jeb->first_node)
825 		jeb->first_node = raw;
826 	if (jeb->last_node)
827 		jeb->last_node->next_phys = raw;
828 	jeb->last_node = raw;
829 
830 	fd->raw = raw;
831 	fd->next = NULL;
832 	fd->version = je32_to_cpu(rd->version);
833 	fd->ino = je32_to_cpu(rd->ino);
834 	fd->nhash = full_name_hash(fd->name, rd->nsize);
835 	fd->type = rd->type;
836 	USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
837 	jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
838 
839 	return 0;
840 }
841 
count_list(struct list_head * l)842 static int count_list(struct list_head *l)
843 {
844 	uint32_t count = 0;
845 	struct list_head *tmp;
846 
847 	list_for_each(tmp, l) {
848 		count++;
849 	}
850 	return count;
851 }
852 
853 /* Note: This breaks if list_empty(head). I don't care. You
854    might, if you copy this code and use it elsewhere :) */
rotate_list(struct list_head * head,uint32_t count)855 static void rotate_list(struct list_head *head, uint32_t count)
856 {
857 	struct list_head *n = head->next;
858 
859 	list_del(head);
860 	while(count--) {
861 		n = n->next;
862 	}
863 	list_add(head, n);
864 }
865 
jffs2_rotate_lists(struct jffs2_sb_info * c)866 void jffs2_rotate_lists(struct jffs2_sb_info *c)
867 {
868 	uint32_t x;
869 	uint32_t rotateby;
870 
871 	x = count_list(&c->clean_list);
872 	if (x) {
873 		rotateby = pseudo_random % x;
874 		D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
875 
876 		rotate_list((&c->clean_list), rotateby);
877 
878 		D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
879 			  list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
880 	} else {
881 		D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
882 	}
883 
884 	x = count_list(&c->very_dirty_list);
885 	if (x) {
886 		rotateby = pseudo_random % x;
887 		D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
888 
889 		rotate_list((&c->very_dirty_list), rotateby);
890 
891 		D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
892 			  list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
893 	} else {
894 		D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
895 	}
896 
897 	x = count_list(&c->dirty_list);
898 	if (x) {
899 		rotateby = pseudo_random % x;
900 		D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
901 
902 		rotate_list((&c->dirty_list), rotateby);
903 
904 		D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
905 			  list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
906 	} else {
907 		D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
908 	}
909 
910 	x = count_list(&c->erasable_list);
911 	if (x) {
912 		rotateby = pseudo_random % x;
913 		D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
914 
915 		rotate_list((&c->erasable_list), rotateby);
916 
917 		D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
918 			  list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
919 	} else {
920 		D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
921 	}
922 
923 	if (c->nr_erasing_blocks) {
924 		rotateby = pseudo_random % c->nr_erasing_blocks;
925 		D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
926 
927 		rotate_list((&c->erase_pending_list), rotateby);
928 
929 		D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
930 			  list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
931 	} else {
932 		D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
933 	}
934 
935 	if (c->nr_free_blocks) {
936 		rotateby = pseudo_random % c->nr_free_blocks;
937 		D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
938 
939 		rotate_list((&c->free_list), rotateby);
940 
941 		D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
942 			  list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
943 	} else {
944 		D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
945 	}
946 }
947