1// Copyright 2021 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert DATATYPE in ["QS8", "QU8"] 7$assert REQUANTIZATION == "FP32" 8$assert SSE in [2, 4] 9$assert not AVX or SSE == 4 10$SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE] 11$assert BATCH_TILE % 8 == 0 12$assert BATCH_TILE >= 8 13$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 14#include <assert.h> 15 16#include <${SSE_HEADER}> 17 18#include <xnnpack/unaligned.h> 19#include <xnnpack/vmul.h> 20 21 22$PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("sse4" if SSE == 4 and DATATYPE == "QS8" else "sse2") 23$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE] 24$_MM_CVTEPX8_EPI16 = {"QS8": "_mm_cvtepi8_epi16", "QU8": "_mm_cvtepu8_epi16"}[DATATYPE] 25$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE] 26$_MM_MIN_EPX8 = {"QS8": "_mm_min_epi8", "QU8": "_mm_min_epu8"}[DATATYPE] 27$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE] 28$ISA = "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE] 29void xnn_${DATATYPE.lower()}_vmulc_minmax_${REQUANTIZATION.lower()}_ukernel__${ISA}_mul16_ld64_x${BATCH_TILE}( 30 size_t n, 31 const ${XINT8_T}* input_a, 32 const ${XINT8_T}* input_b, 33 ${XINT8_T}* output, 34 const union xnn_${DATATYPE.lower()}_mul_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS 35 36{ 37 const __m128i va_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.a_zero_point); 38 const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale); 39 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); 40 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); 41 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max); 42 43 __m128i vxb = _mm_sub_epi16( 44 _mm_shuffle_epi32(_mm_cvtsi32_si128(UINT32_C(0x00010001) * (uint32_t) (uint16_t) (int16_t) *input_b), 0), 45 _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.b_zero_point)); 46 for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) { 47 $if SSE == 4: 48 const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a)); 49 $for N in range(8, BATCH_TILE, 8): 50 const __m128i va${ABC[N:N+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (input_a + ${N}))); 51 $else: 52 __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a); 53 $for N in range(8, BATCH_TILE, 8): 54 __m128i va${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i*) (input_a + ${N})); 55 input_a += ${BATCH_TILE}; 56 57 $if SSE < 4: 58 $if DATATYPE == "QU8": 59 const __m128i vzero = _mm_setzero_si128(); 60 $for N in range(0, BATCH_TILE, 8): 61 va${ABC[N:N+8]} = _mm_unpacklo_epi8(va${ABC[N:N+8]}, vzero); 62 $else: 63 $for N in range(0, BATCH_TILE, 8): 64 va${ABC[N:N+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[N:N+8]}, va${ABC[N:N+8]}), 8); 65 66 $for N in range(0, BATCH_TILE, 8): 67 const __m128i vxa${ABC[N:N+8]} = _mm_sub_epi16(va${ABC[N:N+8]}, va_zero_point); 68 69 $for N in range(0, BATCH_TILE, 8): 70 const __m128i vprod${ABC[N:N+8]}lo = _mm_mullo_epi16(vxa${ABC[N:N+8]}, vxb); 71 const __m128i vprod${ABC[N:N+8]}hi = _mm_mulhi_epi16(vxa${ABC[N:N+8]}, vxb); 72 73 $for N in range(0, BATCH_TILE, 8): 74 const __m128i vprod${ABC[N:N+4]} = _mm_unpacklo_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi); 75 const __m128i vprod${ABC[N+4:N+8]} = _mm_unpackhi_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi); 76 77 $for N in range(0, BATCH_TILE, 4): 78 __m128 vfpacc${ABC[N:N+4]} = _mm_cvtepi32_ps(vprod${ABC[N:N+4]}); 79 80 $for N in range(0, BATCH_TILE, 4): 81 vfpacc${ABC[N:N+4]} = _mm_mul_ps(vfpacc${ABC[N:N+4]}, vscale); 82 83 $for N in range(0, BATCH_TILE, 4): 84 const __m128i vacc${ABC[N:N+4]} = _mm_cvtps_epi32(vfpacc${ABC[N:N+4]}); 85 86 $for N in range(0, BATCH_TILE, 8): 87 __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point); 88 89 $if DATATYPE == "QS8" and SSE < 4: 90 $for N in range(0, BATCH_TILE, 8): 91 vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min); 92 93 $for N in range(0, BATCH_TILE, 8): 94 vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max); 95 96 $for N in range(0, BATCH_TILE, 16): 97 $if N + 8 < BATCH_TILE: 98 __m128i vout${ABC[N:N+16]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); 99 $else: 100 __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); 101 102 $if DATATYPE == "QU8" or SSE == 4: 103 $for N in range(0, BATCH_TILE, 16): 104 $if N + 8 < BATCH_TILE: 105 vout${ABC[N:N+16]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+16]}, voutput_min); 106 $else: 107 vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_min); 108 109 $for N in range(0, BATCH_TILE, 16): 110 $if N + 8 < BATCH_TILE: 111 vout${ABC[N:N+16]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+16]}, voutput_max); 112 $else: 113 vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max); 114 115 $if BATCH_TILE >= 16: 116 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 117 $else: 118 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 119 $for N in range(16, BATCH_TILE, 16): 120 $if N + 8 < BATCH_TILE: 121 _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); 122 $else: 123 _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); 124 output += ${BATCH_TILE}; 125 } 126 if XNN_UNLIKELY(n != 0) { 127 ${"do " if BATCH_TILE > 8 else ""}{ 128 $if SSE == 4: 129 const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a)); 130 $else: 131 __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a); 132 $if BATCH_TILE > 8: 133 input_a += 8; 134 135 $if SSE < 4: 136 $if DATATYPE == "QU8": 137 const __m128i vzero = _mm_setzero_si128(); 138 va${ABC[0:8]} = _mm_unpacklo_epi8(va${ABC[0:8]}, vzero); 139 $else: 140 va${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[0:8]}, va${ABC[0:8]}), 8); 141 142 const __m128i vxa${ABC[0:8]} = _mm_sub_epi16(va${ABC[0:8]}, va_zero_point); 143 144 const __m128i vprod${ABC[0:8]}lo = _mm_mullo_epi16(vxa${ABC[0:8]}, vxb); 145 const __m128i vprod${ABC[0:8]}hi = _mm_mulhi_epi16(vxa${ABC[0:8]}, vxb); 146 147 const __m128i vprod${ABC[0:4]} = _mm_unpacklo_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi); 148 const __m128i vprod${ABC[4:8]} = _mm_unpackhi_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi); 149 150 __m128 vfpacc${ABC[0:4]} = _mm_cvtepi32_ps(vprod${ABC[0:4]}); 151 __m128 vfpacc${ABC[4:8]} = _mm_cvtepi32_ps(vprod${ABC[4:8]}); 152 153 vfpacc${ABC[0:4]} = _mm_mul_ps(vfpacc${ABC[0:4]}, vscale); 154 vfpacc${ABC[4:8]} = _mm_mul_ps(vfpacc${ABC[4:8]}, vscale); 155 156 const __m128i vacc${ABC[0:4]} = _mm_cvtps_epi32(vfpacc${ABC[0:4]}); 157 const __m128i vacc${ABC[4:8]} = _mm_cvtps_epi32(vfpacc${ABC[4:8]}); 158 159 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); 160 $if DATATYPE == "QS8" and SSE < 4: 161 vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min); 162 vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max); 163 164 __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]}); 165 $if DATATYPE == "QU8" or SSE == 4: 166 vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min); 167 vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max); 168 169 $if BATCH_TILE > 8: 170 if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) { 171 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 172 output += 8; 173 n -= 8 * sizeof(${XINT8_T}); 174 } else { 175 if (n & (4 * sizeof(${XINT8_T}))) { 176 unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 177 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 178 output += 4; 179 } 180 if (n & (2 * sizeof(${XINT8_T}))) { 181 $if SSE == 4: 182 unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); 183 $else: 184 unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 185 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 186 output += 2; 187 } 188 if (n & (1 * sizeof(${XINT8_T}))) { 189 $if SSE == 4: 190 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 191 $else: 192 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 193 } 194 n = 0; 195 } 196 $else: 197 if (n & (4 * sizeof(${XINT8_T}))) { 198 unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 199 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 200 output += 4; 201 } 202 if (n & (2 * sizeof(${XINT8_T}))) { 203 $if SSE == 4: 204 unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); 205 $else: 206 unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 207 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 208 output += 2; 209 } 210 if (n & (1 * sizeof(${XINT8_T}))) { 211 $if SSE == 4: 212 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 213 $else: 214 *output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 215 } 216 }${" while (n != 0);" if BATCH_TILE > 8 else ""} 217 } 218} 219