1// Copyright 2021 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert DATATYPE in ["QS8", "QU8"] 7$assert REQUANTIZATION == "FP32" 8$assert BATCH_TILE % 8 == 0 9$assert BATCH_TILE >= 8 10$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 11#include <assert.h> 12 13#include <wasm_simd128.h> 14 15#include <xnnpack/vmul.h> 16 17 18$PARAMS_STRUCT = REQUANTIZATION.lower() + "_wasmsimd" 19$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE] 20$WASM_X16X8_LOAD8X8 = {"QS8": "wasm_i16x8_load8x8", "QU8": "wasm_u16x8_load8x8"}[DATATYPE] 21$WASM_X32X4_EXTEND_LOW_X16X8 = {"QS8": "wasm_i32x4_extend_low_i16x8", "QU8": "wasm_u32x4_extend_low_u16x8"}[DATATYPE] 22$WASM_X32X4_EXTEND_HIGH_X16X8 = {"QS8": "wasm_i32x4_extend_high_i16x8", "QU8": "wasm_u32x4_extend_high_u16x8"}[DATATYPE] 23$WASM_X8X16_NARROW_I16X8 = {"QS8": "wasm_i8x16_narrow_i16x8", "QU8": "wasm_u8x16_narrow_i16x8"}[DATATYPE] 24$WASM_X8X16_MIN = {"QS8": "wasm_i8x16_min", "QU8": "wasm_u8x16_min"}[DATATYPE] 25void xnn_${DATATYPE.lower()}_vmul_minmax_${REQUANTIZATION.lower()}_ukernel__wasmsimd_mul32_ld64_x${BATCH_TILE}( 26 size_t n, 27 const ${XINT8_T}* input_a, 28 const ${XINT8_T}* input_b, 29 ${XINT8_T}* output, 30 const union xnn_${DATATYPE.lower()}_mul_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS 31 32{ 33 const v128_t va_zero_point = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.a_zero_point); 34 const v128_t vb_zero_point = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.b_zero_point); 35 const v128_t vscale = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.scale); 36 const v128_t vmagic_bias = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.magic_bias); 37 const v128_t vmagic_min = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.magic_min); 38 const v128_t vmagic_bias_less_output_zero_point = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.magic_bias_less_output_zero_point); 39 const v128_t voutput_max = wasm_v128_load64_splat(params->${PARAMS_STRUCT}.output_max); 40 41 for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) { 42 const v128_t va${ABC[0:8]} = ${WASM_X16X8_LOAD8X8}(input_a); 43 const v128_t vb${ABC[0:8]} = ${WASM_X16X8_LOAD8X8}(input_b); 44 $for N in range(8, BATCH_TILE, 8): 45 const v128_t va${ABC[N:N+8]} = ${WASM_X16X8_LOAD8X8}(input_a + ${N}); 46 const v128_t vb${ABC[N:N+8]} = ${WASM_X16X8_LOAD8X8}(input_b + ${N}); 47 input_a += ${BATCH_TILE}; 48 input_b += ${BATCH_TILE}; 49 50 $for N in range(0, BATCH_TILE, 8): 51 const v128_t vxa${ABC[N:N+8]} = wasm_i16x8_sub(va${ABC[N:N+8]}, va_zero_point); 52 const v128_t vxb${ABC[N:N+8]} = wasm_i16x8_sub(vb${ABC[N:N+8]}, vb_zero_point); 53 54 $for N in range(0, BATCH_TILE, 8): 55 v128_t vacc${ABC[N:N+4]} = wasm_i32x4_mul(wasm_i32x4_extend_low_i16x8(vxa${ABC[N:N+8]}), wasm_i32x4_extend_low_i16x8(vxb${ABC[N:N+8]})); 56 v128_t vacc${ABC[N+4:N+8]} = wasm_i32x4_mul(wasm_i32x4_extend_high_i16x8(vxa${ABC[N:N+8]}), wasm_i32x4_extend_high_i16x8(vxb${ABC[N:N+8]})); 57 58 $for N in range(0, BATCH_TILE, 4): 59 vacc${ABC[N:N+4]} = wasm_f32x4_convert_i32x4(vacc${ABC[N:N+4]}); 60 61 $for N in range(0, BATCH_TILE, 4): 62 vacc${ABC[N:N+4]} = wasm_f32x4_mul(vacc${ABC[N:N+4]}, vscale); 63 64 $for N in range(0, BATCH_TILE, 4): 65 vacc${ABC[N:N+4]} = wasm_f32x4_add(vacc${ABC[N:N+4]}, vmagic_bias); 66 67 $for N in range(0, BATCH_TILE, 4): 68 vacc${ABC[N:N+4]} = wasm_i32x4_max(vacc${ABC[N:N+4]}, vmagic_min); 69 70 $for N in range(0, BATCH_TILE, 4): 71 vacc${ABC[N:N+4]} = wasm_i32x4_sub(vacc${ABC[N:N+4]}, vmagic_bias_less_output_zero_point); 72 73 $for N in range(0, BATCH_TILE, 8): 74 v128_t vout${ABC[N:N+8]} = wasm_i16x8_narrow_i32x4(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}); 75 76 $for N in range(0, BATCH_TILE, 16): 77 $if N + 8 < BATCH_TILE: 78 v128_t vout${ABC[N:N+16]} = ${WASM_X8X16_NARROW_I16X8}(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); 79 $else: 80 v128_t vout${ABC[N:N+8]}${ABC[N:N+8]} = ${WASM_X8X16_NARROW_I16X8}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); 81 82 $for N in range(0, BATCH_TILE, 16): 83 $if N + 8 < BATCH_TILE: 84 vout${ABC[N:N+16]} = ${WASM_X8X16_MIN}(vout${ABC[N:N+16]}, voutput_max); 85 $else: 86 vout${ABC[N:N+8]}${ABC[N:N+8]} = ${WASM_X8X16_MIN}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max); 87 88 $if BATCH_TILE >= 16: 89 wasm_v128_store(output, vout${ABC[0:16]}); 90 $else: 91 *((double*) output) = wasm_f64x2_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 92 $for N in range(16, BATCH_TILE, 16): 93 $if N + 8 < BATCH_TILE: 94 wasm_v128_store(output + ${N}, vout${ABC[N:N+16]}); 95 $else: 96 *((double*) output) = wasm_f64x2_extract_lane(output + ${N}, vout${ABC[N:N+8]}${ABC[N:N+8]}); 97 output += ${BATCH_TILE}; 98 } 99 if XNN_UNLIKELY(n != 0) { 100 ${"do " if BATCH_TILE > 8 else ""}{ 101 const v128_t va${ABC[0:8]} = ${WASM_X16X8_LOAD8X8}(input_a); 102 const v128_t vb${ABC[0:8]} = ${WASM_X16X8_LOAD8X8}(input_b); 103 $if BATCH_TILE > 8: 104 input_a += 8; 105 input_b += 8; 106 107 const v128_t vxa${ABC[0:8]} = wasm_i16x8_sub(va${ABC[0:8]}, va_zero_point); 108 const v128_t vxb${ABC[0:8]} = wasm_i16x8_sub(vb${ABC[0:8]}, vb_zero_point); 109 110 v128_t vacc${ABC[0:4]} = wasm_i32x4_mul(wasm_i32x4_extend_low_i16x8(vxa${ABC[0:8]}), wasm_i32x4_extend_low_i16x8(vxb${ABC[0:8]})); 111 v128_t vacc${ABC[4:8]} = wasm_i32x4_mul(wasm_i32x4_extend_high_i16x8(vxa${ABC[0:8]}), wasm_i32x4_extend_high_i16x8(vxb${ABC[0:8]})); 112 113 vacc${ABC[0:4]} = wasm_f32x4_convert_i32x4(vacc${ABC[0:4]}); 114 vacc${ABC[4:8]} = wasm_f32x4_convert_i32x4(vacc${ABC[4:8]}); 115 116 vacc${ABC[0:4]} = wasm_f32x4_mul(vacc${ABC[0:4]}, vscale); 117 vacc${ABC[4:8]} = wasm_f32x4_mul(vacc${ABC[4:8]}, vscale); 118 119 vacc${ABC[0:4]} = wasm_f32x4_add(vacc${ABC[0:4]}, vmagic_bias); 120 vacc${ABC[4:8]} = wasm_f32x4_add(vacc${ABC[4:8]}, vmagic_bias); 121 122 vacc${ABC[0:4]} = wasm_i32x4_max(vacc${ABC[0:4]}, vmagic_min); 123 vacc${ABC[4:8]} = wasm_i32x4_max(vacc${ABC[4:8]}, vmagic_min); 124 125 vacc${ABC[0:4]} = wasm_i32x4_sub(vacc${ABC[0:4]}, vmagic_bias_less_output_zero_point); 126 vacc${ABC[4:8]} = wasm_i32x4_sub(vacc${ABC[4:8]}, vmagic_bias_less_output_zero_point); 127 128 v128_t vout${ABC[0:8]} = wasm_i16x8_narrow_i32x4(vacc${ABC[0:4]}, vacc${ABC[4:8]}); 129 v128_t vout${ABC[0:8]}${ABC[0:8]} = ${WASM_X8X16_NARROW_I16X8}(vout${ABC[0:8]}, vout${ABC[0:8]}); 130 vout${ABC[0:8]}${ABC[0:8]} = ${WASM_X8X16_MIN}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max); 131 132 $if BATCH_TILE > 8: 133 if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) { 134 *((double*) output) = wasm_f64x2_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 135 output += 8; 136 n -= 8 * sizeof(${XINT8_T}); 137 } else { 138 if (n & (4 * sizeof(${XINT8_T}))) { 139 *((float*) output) = wasm_f32x4_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 140 vout${ABC[0:8]}${ABC[0:8]} = wasm_u64x2_shr(vout${ABC[0:8]}${ABC[0:8]}, 32); 141 output += 4; 142 } 143 uint32_t vout${ABC[0:4]} = wasm_i32x4_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 144 if (n & (2 * sizeof(${XINT8_T}))) { 145 *((uint16_t*) output) = (uint16_t) vout${ABC[0:4]}; 146 vout${ABC[0:4]} >>= 16; 147 output += 2; 148 } 149 if (n & (1 * sizeof(${XINT8_T}))) { 150 *output = (${XINT8_T}) vout${ABC[0:4]}; 151 } 152 n = 0; 153 } 154 $else: 155 if (n & (4 * sizeof(${XINT8_T}))) { 156 *((float*) output) = wasm_f32x4_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 157 vout${ABC[0:8]}${ABC[0:8]} = wasm_u64x2_shr(vout${ABC[0:8]}${ABC[0:8]}, 32); 158 output += 4; 159 } 160 uint32_t vout${ABC[0:4]} = wasm_i32x4_extract_lane(vout${ABC[0:8]}${ABC[0:8]}, 0); 161 if (n & (2 * sizeof(${XINT8_T}))) { 162 *((uint16_t*) output) = (uint16_t) vout${ABC[0:4]}; 163 vout${ABC[0:4]} >>= 16; 164 output += 2; 165 } 166 if (n & (1 * sizeof(${XINT8_T}))) { 167 *output = (${XINT8_T}) vout${ABC[0:4]}; 168 } 169 }${" while (n != 0);" if BATCH_TILE > 8 else ""} 170 } 171} 172