1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert DATATYPE in ["QS8", "QU8"] 7$assert BATCH_TILE % 8 == 0 8$assert BATCH_TILE >= 8 9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 10#include <assert.h> 11 12#include <immintrin.h> 13 14#include <xnnpack/intrinsics-polyfill.h> 15#include <xnnpack/vadd.h> 16 17 18$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE] 19$_MM256_CVTEPX8_EPI32 = {"QS8": "_mm256_cvtepi8_epi32", "QU8": "_mm256_cvtepu8_epi32"}[DATATYPE] 20$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE] 21$_MM_MIN_EPX8 = {"QS8": "_mm_min_epi8", "QU8": "_mm_min_epu8"}[DATATYPE] 22$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE] 23void xnn_${DATATYPE.lower()}_vaddc_minmax_ukernel__avx2_mul32_ld64_x${BATCH_TILE}( 24 size_t n, 25 const ${XINT8_T}* input_a, 26 const ${XINT8_T}* input_b, 27 ${XINT8_T}* output, 28 const union xnn_${DATATYPE.lower()}_add_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS 29{ 30 const __m256i va_multiplier = _mm256_load_si256((const __m256i*) params->avx2.a_multiplier); 31 const __m128i vshift = _mm_load_si128((const __m128i*) params->avx2.shift); 32 $if BATCH_TILE > 8: 33 const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->avx2.output_zero_point); 34 $else: 35 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->avx2.output_zero_point); 36 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->avx2.output_min); 37 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->avx2.output_max); 38 39 const __m256i vbias = _mm256_add_epi32( 40 _mm256_broadcastd_epi32(_mm_cvtsi32_si128(params->avx2.b_multiplier[0] * (int32_t) *input_b)), 41 _mm256_load_si256((const __m256i*) params->avx2.bias)); 42 for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) { 43 const __m256i va${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) input_a)); 44 $for N in range(8, BATCH_TILE, 8): 45 const __m256i va${ABC[N:N+8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) (input_a + ${N}))); 46 input_a += ${BATCH_TILE}; 47 48 $for N in range(0, BATCH_TILE, 8): 49 __m256i vacc${ABC[N:N+8]} = _mm256_add_epi32(vbias, _mm256_mullo_epi32(va${ABC[N:N+8]}, va_multiplier)); 50 51 $for N in range(0, BATCH_TILE, 8): 52 vacc${ABC[N:N+8]} = _mm256_sra_epi32(vacc${ABC[N:N+8]}, vshift); 53 54 $for N in range(0, BATCH_TILE, 16): 55 $if N + 8 < BATCH_TILE: 56 __m256i vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[N:N+8]}, vacc${ABC[N+8:N+16]}), voutput_zero_point); 57 $elif BATCH_TILE > 8: 58 __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[N:N+8]}), _mm256_extracti128_si256(vacc${ABC[N:N+8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); 59 $else: 60 __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[N:N+8]}), _mm256_extracti128_si256(vacc${ABC[N:N+8]}, 1)), voutput_zero_point); 61 62 $for N in range(0, BATCH_TILE, 16): 63 $if N + 8 < BATCH_TILE: 64 __m128i vout${ABC[N:N+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(_mm256_castsi256_si128(vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]}), _mm256_extracti128_si256(vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0)); 65 $else: 66 __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); 67 68 $for N in range(0, BATCH_TILE, 16): 69 $if N + 8 < BATCH_TILE: 70 vout${ABC[N:N+16]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+16]}, voutput_min); 71 $else: 72 vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_min); 73 74 $for N in range(0, BATCH_TILE, 16): 75 $if N + 8 < BATCH_TILE: 76 vout${ABC[N:N+16]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+16]}, voutput_max); 77 $else: 78 vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max); 79 80 $if BATCH_TILE >= 16: 81 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 82 $else: 83 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 84 $for N in range(16, BATCH_TILE, 16): 85 $if N + 8 < BATCH_TILE: 86 _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); 87 $else: 88 _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); 89 output += ${BATCH_TILE}; 90 } 91 if XNN_UNLIKELY(n != 0) { 92 ${"do " if BATCH_TILE > 8 else ""}{ 93 const __m256i va${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) input_a)); 94 $if BATCH_TILE > 8: 95 input_a += 8; 96 97 __m256i vacc${ABC[0:8]} = _mm256_add_epi32(vbias, _mm256_mullo_epi32(va${ABC[0:8]}, va_multiplier)); 98 99 vacc${ABC[0:8]} = _mm256_sra_epi32(vacc${ABC[0:8]}, vshift); 100 101 $if BATCH_TILE > 8: 102 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); 103 $else: 104 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point); 105 __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]}); 106 vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min); 107 vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max); 108 109 $if BATCH_TILE > 8: 110 if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) { 111 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 112 output += 8; 113 n -= 8 * sizeof(${XINT8_T}); 114 } else { 115 if (n & (4 * sizeof(${XINT8_T}))) { 116 _mm_storeu_si32(output, vout${ABC[0:8]}${ABC[0:8]}); 117 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 118 output += 4; 119 } 120 if (n & (2 * sizeof(${XINT8_T}))) { 121 _mm_storeu_si16(output, vout${ABC[0:8]}${ABC[0:8]}); 122 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 123 output += 2; 124 } 125 if (n & (1 * sizeof(${XINT8_T}))) { 126 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 127 } 128 n = 0; 129 } 130 $else: 131 if (n & (4 * sizeof(${XINT8_T}))) { 132 _mm_storeu_si32(output, vout${ABC[0:8]}${ABC[0:8]}); 133 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 134 output += 4; 135 } 136 if (n & (2 * sizeof(${XINT8_T}))) { 137 _mm_storeu_si16(output, vout${ABC[0:8]}${ABC[0:8]}); 138 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 139 output += 2; 140 } 141 if (n & (1 * sizeof(${XINT8_T}))) { 142 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 143 } 144 }${" while (n != 0);" if BATCH_TILE > 8 else ""} 145 } 146} 147