xref: /aosp_15_r20/external/XNNPACK/src/qs8-vadd/sse-mul16-ld64.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert DATATYPE in ["QS8", "QU8"]
7$assert SSE in [2, 4]
8$assert not AVX or SSE == 4
9$SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE]
10$assert BATCH_TILE % 8 == 0
11$assert BATCH_TILE >= 8
12$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
13#include <assert.h>
14
15#include <${SSE_HEADER}>
16
17#include <xnnpack/unaligned.h>
18#include <xnnpack/vadd.h>
19
20
21$PARAMS_STRUCT = "sse4_mul16" if SSE == 4 and DATATYPE == "QS8" else "sse2"
22$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
23$_MM_CVTEPX8_EPI16 = {"QS8": "_mm_cvtepi8_epi16", "QU8": "_mm_cvtepu8_epi16"}[DATATYPE]
24$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE]
25$_MM_MIN_EPX8 = {"QS8": "_mm_min_epi8", "QU8": "_mm_min_epu8"}[DATATYPE]
26$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE]
27$ISA = "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE]
28void xnn_${DATATYPE.lower()}_vadd_minmax_ukernel__${ISA}_mul16_ld64_x${BATCH_TILE}(
29    size_t n,
30    const ${XINT8_T}* input_a,
31    const ${XINT8_T}* input_b,
32    ${XINT8_T}* output,
33    const union xnn_${DATATYPE.lower()}_add_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
34{
35  const __m128i vbias = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.bias);
36  const __m128i va_multiplier_lo = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.a_multiplier_lo);
37  const __m128i va_multiplier_hi = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.a_multiplier_hi);
38  const __m128i vb_multiplier_lo = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.b_multiplier_lo);
39  const __m128i vb_multiplier_hi = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.b_multiplier_hi);
40  const __m128i vshift = _mm_cvtsi32_si128((int) params->${PARAMS_STRUCT}.shift);
41  const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
42  const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
43  const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max);
44
45  for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) {
46    $if SSE == 4:
47      const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a));
48      const __m128i vb${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_b));
49      $for N in range(8, BATCH_TILE, 8):
50        const __m128i va${ABC[N:N+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (input_a + ${N})));
51        const __m128i vb${ABC[N:N+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (input_b + ${N})));
52    $else:
53      __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a);
54      __m128i vb${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_b);
55      $for N in range(8, BATCH_TILE, 8):
56        __m128i va${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i*) (input_a + ${N}));
57        __m128i vb${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i*) (input_b + ${N}));
58    input_a += ${BATCH_TILE};
59    input_b += ${BATCH_TILE};
60
61    $if SSE < 4:
62      $if DATATYPE == "QU8":
63        const __m128i vzero = _mm_setzero_si128();
64        $for N in range(0, BATCH_TILE, 8):
65          va${ABC[N:N+8]} = _mm_unpacklo_epi8(va${ABC[N:N+8]}, vzero);
66          vb${ABC[N:N+8]} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}, vzero);
67      $else:
68        $for N in range(0, BATCH_TILE, 8):
69          va${ABC[N:N+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[N:N+8]}, va${ABC[N:N+8]}), 8);
70          vb${ABC[N:N+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vb${ABC[N:N+8]}, vb${ABC[N:N+8]}), 8);
71
72    $for N in range(0, BATCH_TILE, 8):
73      __m128i vaprod${ABC[N:N+8]}hi = _mm_mulhi_epu16(va${ABC[N:N+8]}, va_multiplier_lo);
74      __m128i vbprod${ABC[N:N+8]}hi = _mm_mulhi_epu16(vb${ABC[N:N+8]}, vb_multiplier_lo);
75      const __m128i vaprod${ABC[N:N+8]}lo = _mm_mullo_epi16(va${ABC[N:N+8]}, va_multiplier_lo);
76      const __m128i vbprod${ABC[N:N+8]}lo = _mm_mullo_epi16(vb${ABC[N:N+8]}, vb_multiplier_lo);
77
78    $for N in range(0, BATCH_TILE, 8):
79      vaprod${ABC[N:N+8]}hi = _mm_add_epi16(vaprod${ABC[N:N+8]}hi, _mm_mullo_epi16(va${ABC[N:N+8]}, va_multiplier_hi));
80      vbprod${ABC[N:N+8]}hi = _mm_add_epi16(vbprod${ABC[N:N+8]}hi, _mm_mullo_epi16(vb${ABC[N:N+8]}, vb_multiplier_hi));
81
82    $if DATATYPE == "QS8":
83      $for N in range(0, BATCH_TILE, 8):
84        vaprod${ABC[N:N+8]}hi = _mm_sub_epi16(vaprod${ABC[N:N+8]}hi, _mm_and_si128(_mm_srai_epi16(va${ABC[N:N+8]}, 15), va_multiplier_lo));
85        vbprod${ABC[N:N+8]}hi = _mm_sub_epi16(vbprod${ABC[N:N+8]}hi, _mm_and_si128(_mm_srai_epi16(vb${ABC[N:N+8]}, 15), vb_multiplier_lo));
86
87    $for N in range(0, BATCH_TILE, 8):
88      __m128i vacc${ABC[N:N+4]} = _mm_add_epi32(vbias, _mm_unpacklo_epi16(vaprod${ABC[N:N+8]}lo, vaprod${ABC[N:N+8]}hi));
89      __m128i vacc${ABC[N+4:N+8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vaprod${ABC[N:N+8]}lo, vaprod${ABC[N:N+8]}hi));
90
91    $for N in range(0, BATCH_TILE, 8):
92      vacc${ABC[N:N+4]} = _mm_add_epi32(vacc${ABC[N:N+4]}, _mm_unpacklo_epi16(vbprod${ABC[N:N+8]}lo, vbprod${ABC[N:N+8]}hi));
93      vacc${ABC[N+4:N+8]} = _mm_add_epi32(vacc${ABC[N+4:N+8]}, _mm_unpackhi_epi16(vbprod${ABC[N:N+8]}lo, vbprod${ABC[N:N+8]}hi));
94
95    $for N in range(0, BATCH_TILE, 4):
96      vacc${ABC[N:N+4]} = _mm_sra_epi32(vacc${ABC[N:N+4]}, vshift);
97
98    $for N in range(0, BATCH_TILE, 8):
99      __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point);
100
101    $if DATATYPE == "QS8" and SSE < 4:
102      $for N in range(0, BATCH_TILE, 8):
103        vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min);
104
105      $for N in range(0, BATCH_TILE, 8):
106        vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max);
107
108    $for N in range(0, BATCH_TILE, 16):
109      $if N + 8 < BATCH_TILE:
110        __m128i vout${ABC[N:N+16]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]});
111      $else:
112        __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]});
113
114    $if DATATYPE == "QU8" or SSE == 4:
115      $for N in range(0, BATCH_TILE, 16):
116        $if N + 8 < BATCH_TILE:
117          vout${ABC[N:N+16]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+16]}, voutput_min);
118        $else:
119          vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_min);
120
121      $for N in range(0, BATCH_TILE, 16):
122        $if N + 8 < BATCH_TILE:
123          vout${ABC[N:N+16]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+16]}, voutput_max);
124        $else:
125          vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max);
126
127    $if BATCH_TILE >= 16:
128      _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
129    $else:
130      _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
131    $for N in range(16, BATCH_TILE, 16):
132      $if N + 8 < BATCH_TILE:
133        _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]});
134      $else:
135        _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]});
136    output += ${BATCH_TILE};
137  }
138  if XNN_UNLIKELY(n != 0) {
139    ${"do " if BATCH_TILE > 8 else ""}{
140      $if SSE == 4:
141        const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a));
142        const __m128i vb${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_b));
143      $else:
144        __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a);
145        __m128i vb${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_b);
146      $if BATCH_TILE > 8:
147        input_a += 8;
148        input_b += 8;
149
150      $if SSE < 4:
151        $if DATATYPE == "QU8":
152          const __m128i vzero = _mm_setzero_si128();
153          va${ABC[0:8]} = _mm_unpacklo_epi8(va${ABC[0:8]}, vzero);
154          vb${ABC[0:8]} = _mm_unpacklo_epi8(vb${ABC[0:8]}, vzero);
155        $else:
156          va${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[0:8]}, va${ABC[0:8]}), 8);
157          vb${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vb${ABC[0:8]}, vb${ABC[0:8]}), 8);
158
159      __m128i vaprod${ABC[0:8]}hi = _mm_mulhi_epu16(va${ABC[0:8]}, va_multiplier_lo);
160      __m128i vbprod${ABC[0:8]}hi = _mm_mulhi_epu16(vb${ABC[0:8]}, vb_multiplier_lo);
161      const __m128i vaprod${ABC[0:8]}lo = _mm_mullo_epi16(va${ABC[0:8]}, va_multiplier_lo);
162      const __m128i vbprod${ABC[0:8]}lo = _mm_mullo_epi16(vb${ABC[0:8]}, vb_multiplier_lo);
163
164      vaprod${ABC[0:8]}hi = _mm_add_epi16(vaprod${ABC[0:8]}hi, _mm_mullo_epi16(va${ABC[0:8]}, va_multiplier_hi));
165      vbprod${ABC[0:8]}hi = _mm_add_epi16(vbprod${ABC[0:8]}hi, _mm_mullo_epi16(vb${ABC[0:8]}, vb_multiplier_hi));
166
167      $if DATATYPE == "QS8":
168        vaprod${ABC[0:8]}hi = _mm_sub_epi16(vaprod${ABC[0:8]}hi, _mm_and_si128(_mm_srai_epi16(va${ABC[0:8]}, 15), va_multiplier_lo));
169        vbprod${ABC[0:8]}hi = _mm_sub_epi16(vbprod${ABC[0:8]}hi, _mm_and_si128(_mm_srai_epi16(vb${ABC[0:8]}, 15), vb_multiplier_lo));
170
171      __m128i vacc${ABC[0:4]} = _mm_add_epi32(vbias, _mm_unpacklo_epi16(vaprod${ABC[0:8]}lo, vaprod${ABC[0:8]}hi));
172      __m128i vacc${ABC[4:8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vaprod${ABC[0:8]}lo, vaprod${ABC[0:8]}hi));
173
174      vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vbprod${ABC[0:8]}lo, vbprod${ABC[0:8]}hi));
175      vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vbprod${ABC[0:8]}lo, vbprod${ABC[0:8]}hi));
176
177      vacc${ABC[0:4]} = _mm_sra_epi32(vacc${ABC[0:4]}, vshift);
178      vacc${ABC[4:8]} = _mm_sra_epi32(vacc${ABC[4:8]}, vshift);
179
180      __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point);
181      $if DATATYPE == "QS8" and SSE < 4:
182        vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min);
183        vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max);
184
185      __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]});
186      $if DATATYPE == "QU8" or SSE == 4:
187        vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min);
188        vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max);
189
190      $if BATCH_TILE > 8:
191        if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) {
192          _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
193          output += 8;
194          n -= 8 * sizeof(${XINT8_T});
195        } else {
196          if (n & (4 * sizeof(${XINT8_T}))) {
197            unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
198            vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
199            output += 4;
200          }
201          if (n & (2 * sizeof(${XINT8_T}))) {
202            $if SSE == 4:
203              unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
204            $else:
205              unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
206            vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
207            output += 2;
208          }
209          if (n & (1 * sizeof(${XINT8_T}))) {
210            $if SSE == 4:
211              *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
212            $else:
213              *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
214          }
215          n = 0;
216        }
217      $else:
218        if (n & (4 * sizeof(${XINT8_T}))) {
219          unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
220          vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
221          output += 4;
222        }
223        if (n & (2 * sizeof(${XINT8_T}))) {
224          $if SSE == 4:
225            unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
226          $else:
227            unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
228          vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
229          output += 2;
230        }
231        if (n & (1 * sizeof(${XINT8_T}))) {
232          $if SSE == 4:
233            *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
234          $else:
235            *output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
236        }
237    }${" while (n != 0);" if BATCH_TILE > 8 else ""}
238  }
239}
240