xref: /aosp_15_r20/external/XNNPACK/src/qs8-gemm/MRx8c8-avx2.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert REQUANTIZATION == "FP32"
7$assert DATATYPE in ["QC8", "QS8", "QU8"]
8$assert VARIANT in ["LD128", "EXTENDED"]
9$assert MR <= 4
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/gemm.h>
15#include <xnnpack/intrinsics-polyfill.h>
16#include <xnnpack/math.h>
17#include <xnnpack/unaligned.h>
18
19
20$GEMM_SUFFIX = "_xw" if VARIANT == "EXTENDED" else ""
21$PARAMS_STRUCT = REQUANTIZATION.lower() + "_avx2"
22$PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower()
23$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
24void xnn_${DATATYPE.lower()}_gemm${GEMM_SUFFIX}_minmax_fp32_ukernel_${MR}x8c8__avx2(
25    size_t mr,
26    size_t nc,
27    size_t kc,
28    const ${XINT8_T}* restrict a,
29    size_t a_stride,
30    const void* restrict w,
31    ${XINT8_T}* restrict c,
32    size_t cm_stride,
33    size_t cn_stride,
34    const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
35{
36  assert(mr != 0);
37  assert(mr <= ${MR});
38  assert(nc != 0);
39  assert(kc != 0);
40  assert(kc % sizeof(${XINT8_T}) == 0);
41  assert(a != NULL);
42  assert(w != NULL);
43  assert(c != NULL);
44
45  kc = round_up_po2(kc, 8);
46  const ${XINT8_T}* a0 = a;
47  ${XINT8_T}* c0 = c;
48  $for M in range(1, MR):
49    const ${XINT8_T}* a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M-1} + a_stride);
50    ${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride);
51    $if M % 2 == 0:
52      if XNN_UNPREDICTABLE(mr <= ${M}) {
53        a${M} = a${M-1};
54        c${M} = c${M-1};
55      }
56    $elif M + 1 == MR:
57      if XNN_UNPREDICTABLE(mr != ${M+1}) {
58        a${M} = a${M-1};
59        c${M} = c${M-1};
60      }
61    $else:
62      if XNN_UNPREDICTABLE(mr < ${M+1}) {
63        a${M} = a${M-1};
64        c${M} = c${M-1};
65      }
66
67  do {
68    $for N in range(0, 8, 2):
69      const __m128i vbias0x${N} = _mm_cvtsi32_si128(((const int*) w)[${N}]);
70      const __m128i vbias0x${N+1} = _mm_cvtsi32_si128(((const int*) w)[${N+1}]);
71      __m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1);
72    $for M in range(1, MR):
73      $for N in range(0, 8, 2):
74        __m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1};
75    w = (const int32_t*) w + 8;
76
77    size_t k = 0;
78    $if DATATYPE == "QU8":
79      const __m256i vb_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point);
80    while (k < kc) {
81      $for M in range(MR):
82        const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M}));
83        $if DATATYPE == "QU8":
84          const __m256i vxa${M} = _mm256_cvtepu8_epi16(va${M});
85        $else:
86          const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M});
87        a${M} += 8;
88
89      $for N in range(0, 8, 2):
90        $if VARIANT == "EXTENDED":
91          $if N == 0:
92            const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) w);
93          $else:
94            const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) ((const int16_t*) w + ${N * 8}));
95        $else:
96          $if N == 0:
97            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
98          $else:
99            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((const ${XINT8_T}*) w + ${N * 8}));
100          $if DATATYPE == "QU8":
101            const __m256i vxb${N}${N+1} = _mm256_sub_epi16(_mm256_cvtepu8_epi16(vb${N}${N+1}), vb_zero_point);
102          $else:
103            const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1});
104
105        $for M in range(MR):
106          vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1}));
107
108      $if VARIANT == "EXTENDED":
109        w = (const void*) ((const int16_t*) w + 64);
110      $else:
111        w = (const void*) ((const ${XINT8_T}*) w + 64);
112      k += 8 * sizeof(${XINT8_T});
113    }
114
115    $for M in range(MR):
116      const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23);
117      const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67);
118
119    $for M in range(MR):
120      const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657);
121
122    const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
123    $for M in range(MR):
124      __m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask);
125
126    $for M in range(MR):
127      __m256 vscaled${M}x01234567 = _mm256_cvtepi32_ps(vacc${M}x01234567);
128
129    $if DATATYPE == "QC8":
130      const __m256 vscale01234567 = _mm256_load_ps(w);
131      w = (const void*) ((const float*) w + 8);
132      $for M in range(MR):
133        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale01234567);
134    $else:
135      const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
136      $for M in range(MR):
137        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale);
138
139    const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
140    $for M in range(MR):
141      vscaled${M}x01234567 = _mm256_min_ps(vscaled${M}x01234567, voutput_max_less_zero_point);
142
143    $for M in range(MR):
144      vacc${M}x01234567 = _mm256_cvtps_epi32(vscaled${M}x01234567);
145
146    const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
147    $for M in range(0, MR, 2):
148      __m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point);
149
150    $for M in range(0, MR, 2):
151      vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0));
152
153    $if DATATYPE == "QU8":
154      $if MR > 2:
155        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
156      $else:
157        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
158
159      vout = _mm256_max_epu8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
160    $else:
161      $if MR > 2:
162        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
163      $else:
164        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
165
166      vout = _mm256_max_epi8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
167
168    __m128i vout_lo = _mm256_castsi256_si128(vout);
169    __m128i vout_hi = _mm256_extracti128_si256(vout, 1);
170
171    if (nc >= 8) {
172      _mm_storel_epi64((__m128i*) c0, vout_lo);
173      $if MR > 1:
174        _mm_storel_epi64((__m128i*) c1, vout_hi);
175      $if MR > 2:
176        _mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo));
177      $if MR > 3:
178        _mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi));
179
180      $for M in range(MR):
181        c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride);
182
183      $for M in range(MR):
184        a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} - kc);
185
186      nc -= 8;
187    } else {
188      if (nc & 4) {
189        _mm_storeu_si32(c0, vout_lo);
190        $if MR > 1:
191          _mm_storeu_si32(c1, vout_hi);
192        $if MR > 2:
193          unaligned_store_u32(c2, (uint32_t) _mm_extract_epi32(vout_lo, 2));
194        $if MR > 3:
195          unaligned_store_u32(c3, (uint32_t) _mm_extract_epi32(vout_hi, 2));
196
197        $for M in range(MR):
198          c${M} += 4;
199
200        vout_lo = _mm_srli_epi64(vout_lo, 32);
201        vout_hi = _mm_srli_epi64(vout_hi, 32);
202      }
203      if (nc & 2) {
204        unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout_lo, 0));
205        $if MR > 1:
206          unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout_hi, 0));
207        $if MR > 2:
208          unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout_lo, 4));
209        $if MR > 3:
210          unaligned_store_u16(c3, (uint16_t) _mm_extract_epi16(vout_hi, 4));
211
212        $for M in range(MR):
213          c${M} += 2;
214
215        vout_lo = _mm_srli_epi32(vout_lo, 16);
216        vout_hi = _mm_srli_epi32(vout_hi, 16);
217      }
218      if (nc & 1) {
219        *c0 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 0);
220        $if MR > 1:
221          *c1 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 0);
222        $if MR > 2:
223          *c2 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 8);
224        $if MR > 3:
225          *c3 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 8);
226      }
227
228      nc = 0;
229    }
230  } while (nc != 0);
231}
232