xref: /aosp_15_r20/external/XNNPACK/src/qs8-gavgpool/unipass-neon.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert DATATYPE in ["QS8", "QU8"]
7$assert CHANNEL_TILE % 8 == 0
8$assert CHANNEL_TILE >= 8
9$assert ROW_TILE >= 3
10$assert REQUANTIZATION in ["FP32", "RNDNU"]
11$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
12#include <assert.h>
13
14#include <arm_neon.h>
15
16#include <xnnpack/gavgpool.h>
17$if ARMV8:
18  #include <xnnpack/intrinsics-polyfill.h>
19
20
21$PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("neonv8" if ARMV8 else "neon")
22$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
23$XINT8X8_T = {"QS8": "int8x8_t", "QU8": "uint8x8_t"}[DATATYPE]
24$XINT8X16_T = {"QS8": "int8x16_t", "QU8": "uint8x16_t"}[DATATYPE]
25$XINT16X8_T = {"QS8": "int16x8_t", "QU8": "uint16x8_t"}[DATATYPE]
26$VLD1_X8 = {"QS8": "vld1_s8", "QU8": "vld1_u8"}[DATATYPE]
27$VLD1_DUP_X8 = {"QS8": "vld1_dup_s8", "QU8": "vld1_dup_u8"}[DATATYPE]
28$VLD1Q_DUP_X8 = {"QS8": "vld1q_dup_s8", "QU8": "vld1q_dup_u8"}[DATATYPE]
29$VST1_X8 = {"QS8": "vst1_s8", "QU8": "vst1_u8"}[DATATYPE]
30$VST1Q_X8 = {"QS8": "vst1q_s8", "QU8": "vst1q_u8"}[DATATYPE]
31$VST1_LANE_X8 = {"QS8": "vst1_lane_s8", "QU8": "vst1_lane_u8"}[DATATYPE]
32$VADDL_X8 = {"QS8": "vaddl_s8", "QU8": "vaddl_u8"}[DATATYPE]
33$VADDW_X8 = {"QS8": "vaddw_s8", "QU8": "vaddw_u8"}[DATATYPE]
34$VMIN_X8 = {"QS8": "vmin_s8", "QU8": "vmin_u8"}[DATATYPE]
35$VMINQ_X8 = {"QS8": "vminq_s8", "QU8": "vminq_u8"}[DATATYPE]
36$VMAX_X8 = {"QS8": "vmax_s8", "QU8": "vmax_u8"}[DATATYPE]
37$VMAXQ_X8 = {"QS8": "vmaxq_s8", "QU8": "vmaxq_u8"}[DATATYPE]
38$VEXT_X8 = {"QS8": "vext_s8", "QU8": "vext_u8"}[DATATYPE]
39$VQMOVXN_S16 = {"QS8": "vqmovn_s16", "QU8": "vqmovun_s16"}[DATATYPE]
40$VQMOVXN_HIGH_S16 = {"QS8": "vqmovn_high_s16", "QU8": "vqmovun_high_s16"}[DATATYPE]
41$VGET_LOW_X8 = {"QS8": "vget_low_s8", "QU8": "vget_low_u8"}[DATATYPE]
42$VCOMBINE_X8 = {"QS8": "vcombine_s8", "QU8": "vcombine_u8"}[DATATYPE]
43$VREINTERPRET_U32_X8 = {"QS8": "vreinterpret_u32_s8", "QU8": "vreinterpret_u32_u8"}[DATATYPE]
44$VREINTERPRET_U16_X8 = {"QS8": "vreinterpret_u16_s8", "QU8": "vreinterpret_u16_u8"}[DATATYPE]
45$ISA = "neonv8" if ARMV8 else "neon"
46void xnn_${DATATYPE.lower()}_gavgpool_minmax_${REQUANTIZATION.lower()}_ukernel_${ROW_TILE}x__${ISA}_c${CHANNEL_TILE}(
47    size_t rows,
48    size_t channels,
49    const ${XINT8_T}* input,
50    size_t input_stride,
51    const ${XINT8_T}* zero,
52    ${XINT8_T}* output,
53    const union xnn_${DATATYPE.lower()}_avgpool_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
54{
55  assert(rows != 0);
56  assert(rows <= ${ROW_TILE});
57  assert(channels != 0);
58
59  const ${XINT8_T}* i0 = input;
60  $for M in range(1, ROW_TILE):
61    const ${XINT8_T}* i${M} = (const ${XINT8_T}*) ((uintptr_t) i${M-1} + input_stride);
62    $if M % 2 == 1:
63      if XNN_UNPREDICTABLE(rows < ${M+1}) {
64        i${M} = zero;
65      }
66    $else:
67      if XNN_UNPREDICTABLE(rows <= ${M}) {
68        i${M} = zero;
69      }
70
71  const int32x4_t vinit_bias = vld1q_dup_s32(&params->${PARAMS_STRUCT}.init_bias);
72  $if REQUANTIZATION == "FP32":
73    const float32x4_t vscale = vld1q_dup_f32(&params->${PARAMS_STRUCT}.scale);
74    $if ARMV8:
75      const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->fp32_neonv8.output_zero_point);
76    $else:
77      const float32x4_t vmagic_bias = vld1q_dup_f32(&params->fp32_neon.magic_bias);
78      const int32x4_t vmagic_bias_less_output_zero_point = vld1q_dup_s32(&params->fp32_neon.magic_bias_less_output_zero_point);
79  $elif REQUANTIZATION == "RNDNU":
80    const int32x4_t vleft_pre_shift = vld1q_dup_s32(&params->rndnu_neon.left_pre_shift);
81    const int32x4_t vmultiplier = vld1q_dup_s32(&params->rndnu_neon.multiplier);
82    const int32x4_t vleft_post_shift = vld1q_dup_s32(&params->rndnu_neon.left_post_shift);
83    const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->rndnu_neon.output_zero_point);
84  $if CHANNEL_TILE > 8:
85    const ${XINT8X16_T} voutput_min = ${VLD1Q_DUP_X8}(&params->${PARAMS_STRUCT}.output_min);
86    const ${XINT8X16_T} voutput_max = ${VLD1Q_DUP_X8}(&params->${PARAMS_STRUCT}.output_max);
87  $else:
88    const ${XINT8X8_T} voutput_min = ${VLD1_DUP_X8}(&params->${PARAMS_STRUCT}.output_min);
89    const ${XINT8X8_T} voutput_max = ${VLD1_DUP_X8}(&params->${PARAMS_STRUCT}.output_max);
90  for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) {
91    $for M in range(2):
92      $for C in range(0, CHANNEL_TILE, 8):
93        const ${XINT8X8_T} vi${M}x${ABC[C:C+8]} = ${VLD1_X8}(i${M}); i${M} += 8;
94
95    $for C in range(0, CHANNEL_TILE, 8):
96      const ${XINT8X8_T} vi2x${ABC[C:C+8]} = ${VLD1_X8}(i2); i2 += 8;
97      ${XINT16X8_T} vsum${ABC[C:C+8]} = ${VADDL_X8}(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]});
98
99    $for M in range(2, ROW_TILE):
100      $for C in range(0, CHANNEL_TILE, 8):
101        $if M + 1 != ROW_TILE:
102          const ${XINT8X8_T} vi${M+1}x${ABC[C:C+8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
103        vsum${ABC[C:C+8]} = ${VADDW_X8}(vsum${ABC[C:C+8]}, vi${M}x${ABC[C:C+8]});
104
105    $for C in range(0, CHANNEL_TILE, 8):
106      $if DATATYPE == "QS8":
107        int32x4_t vacc${ABC[C:C+4]} = vaddw_s16(vinit_bias, vget_low_s16(vsum${ABC[C:C+8]}));
108        int32x4_t vacc${ABC[C+4:C+8]} = vaddw_s16(vinit_bias, vget_high_s16(vsum${ABC[C:C+8]}));
109      $else:
110        int32x4_t vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_low_u16(vsum${ABC[C:C+8]})));
111        int32x4_t vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_high_u16(vsum${ABC[C:C+8]})));
112
113    $if REQUANTIZATION == "FP32":
114      $for C in range(0, CHANNEL_TILE, 4):
115        float32x4_t vfpacc${ABC[C:C+4]} = vcvtq_f32_s32(vacc${ABC[C:C+4]});
116
117      $for C in range(0, CHANNEL_TILE, 4):
118        vfpacc${ABC[C:C+4]} = vmulq_f32(vfpacc${ABC[C:C+4]}, vscale);
119
120      $if ARMV8:
121        $for C in range(0, CHANNEL_TILE, 4):
122          vacc${ABC[C:C+4]} = vcvtnq_s32_f32(vfpacc${ABC[C:C+4]});
123      $else:
124        $for C in range(0, CHANNEL_TILE, 4):
125          vacc${ABC[C:C+4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[C:C+4]}, vmagic_bias));
126
127        $for C in range(0, CHANNEL_TILE, 4):
128          vacc${ABC[C:C+4]} = vqsubq_s32(vacc${ABC[C:C+4]}, vmagic_bias_less_output_zero_point);
129    $elif REQUANTIZATION == "RNDNU":
130      $for C in range(0, CHANNEL_TILE, 4):
131        vacc${ABC[C:C+4]} = vqshlq_s32(vacc${ABC[C:C+4]}, vleft_pre_shift);
132
133      $for C in range(0, CHANNEL_TILE, 4):
134        vacc${ABC[C:C+4]} = vqdmulhq_s32(vacc${ABC[C:C+4]}, vmultiplier);
135
136      $for C in range(0, CHANNEL_TILE, 4):
137        vacc${ABC[C:C+4]} = vrshlq_s32(vacc${ABC[C:C+4]}, vleft_post_shift);
138
139    #if XNN_ARCH_ARM64
140      $for C in range(0, CHANNEL_TILE, 8):
141        int16x8_t vacc${ABC[C:C+8]} = vqmovn_high_s32(vqmovn_s32(vacc${ABC[C:C+4]}), vacc${ABC[C+4:C+8]});
142    #else  // !XNN_ARCH_ARM64
143      $for C in range(0, CHANNEL_TILE, 8):
144        int16x8_t vacc${ABC[C:C+8]} = vcombine_s16(vqmovn_s32(vacc${ABC[C:C+4]}), vqmovn_s32(vacc${ABC[C+4:C+8]}));
145    #endif  // !XNN_ARCH_ARM64
146
147    $if REQUANTIZATION != "FP32" or ARMV8:
148      $for C in range(0, CHANNEL_TILE, 8):
149        vacc${ABC[C:C+8]} = vqaddq_s16(vacc${ABC[C:C+8]}, voutput_zero_point);
150
151    #if XNN_ARCH_ARM64
152      $for C in range(0, CHANNEL_TILE, 16):
153        $if C + 8 < CHANNEL_TILE:
154          ${XINT8X16_T} vout${ABC[C:C+16]} = ${VQMOVXN_HIGH_S16}(${VQMOVXN_S16}(vacc${ABC[C:C+8]}), vacc${ABC[C+8:C+16]});
155        $else:
156          ${XINT8X8_T} vout${ABC[C:C+8]} = ${VQMOVXN_S16}(vacc${ABC[C:C+8]});
157    #else  // !XNN_ARCH_ARM64
158      $for C in range(0, CHANNEL_TILE, 16):
159        $if C + 8 < CHANNEL_TILE:
160          ${XINT8X16_T} vout${ABC[C:C+16]} = ${VCOMBINE_X8}(${VQMOVXN_S16}(vacc${ABC[C:C+8]}), ${VQMOVXN_S16}(vacc${ABC[C+8:C+16]}));
161        $else:
162          ${XINT8X8_T} vout${ABC[C:C+8]} = ${VQMOVXN_S16}(vacc${ABC[C:C+8]});
163    #endif  // !XNN_ARCH_ARM64
164
165    $for C in range(0, CHANNEL_TILE, 16):
166      $if C + 8 < CHANNEL_TILE:
167        vout${ABC[C:C+16]} = ${VMAXQ_X8}(vout${ABC[C:C+16]}, voutput_min);
168      $elif CHANNEL_TILE > 8:
169        vout${ABC[C:C+8]} = ${VMAX_X8}(vout${ABC[C:C+8]}, ${VGET_LOW_X8}(voutput_min));
170      $else:
171        vout${ABC[C:C+8]} = ${VMAX_X8}(vout${ABC[C:C+8]}, voutput_min);
172
173    $for C in range(0, CHANNEL_TILE, 16):
174      $if C + 8 < CHANNEL_TILE:
175        vout${ABC[C:C+16]} = ${VMINQ_X8}(vout${ABC[C:C+16]}, voutput_max);
176      $elif CHANNEL_TILE > 8:
177        vout${ABC[C:C+8]} = ${VMIN_X8}(vout${ABC[C:C+8]}, ${VGET_LOW_X8}(voutput_max));
178      $else:
179        vout${ABC[C:C+8]} = ${VMIN_X8}(vout${ABC[C:C+8]}, voutput_max);
180
181    $for C in range(0, CHANNEL_TILE, 16):
182      $if C + 8 < CHANNEL_TILE:
183        ${VST1Q_X8}(output, vout${ABC[C:C+16]}); output += 16;
184      $else:
185        ${VST1_X8}(output, vout${ABC[C:C+8]}); output += 8;
186  }
187  if XNN_UNLIKELY(channels != 0) {
188    ${"do " if CHANNEL_TILE > 8 else ""}{
189      $for M in range(3):
190        const ${XINT8X8_T} vi${M}x${ABC[0:8]} = ${VLD1_X8}(i${M}); i${M} += 8;
191      ${XINT16X8_T} vsum${ABC[0:8]} = ${VADDL_X8}(vi0x${ABC[0:8]}, vi1x${ABC[0:8]});
192
193      $for M in range(2, ROW_TILE):
194        $if M + 1 != ROW_TILE:
195          const ${XINT8X8_T} vi${M+1}x${ABC[0:8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
196        vsum${ABC[0:8]} = ${VADDW_X8}(vsum${ABC[0:8]}, vi${M}x${ABC[0:8]});
197
198      $if DATATYPE == "QS8":
199        int32x4_t vacc${ABC[0:4]} = vaddw_s16(vinit_bias, vget_low_s16(vsum${ABC[0:8]}));
200        int32x4_t vacc${ABC[4:8]} = vaddw_s16(vinit_bias, vget_high_s16(vsum${ABC[0:8]}));
201      $else:
202        int32x4_t vacc${ABC[0:4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_low_u16(vsum${ABC[0:8]})));
203        int32x4_t vacc${ABC[4:8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_high_u16(vsum${ABC[0:8]})));
204
205      $if REQUANTIZATION == "FP32":
206        float32x4_t vfpacc${ABC[0:4]} = vcvtq_f32_s32(vacc${ABC[0:4]});
207        float32x4_t vfpacc${ABC[4:8]} = vcvtq_f32_s32(vacc${ABC[4:8]});
208
209        vfpacc${ABC[0:4]} = vmulq_f32(vfpacc${ABC[0:4]}, vscale);
210        vfpacc${ABC[4:8]} = vmulq_f32(vfpacc${ABC[4:8]}, vscale);
211
212        $if ARMV8:
213          vacc${ABC[0:4]} = vcvtnq_s32_f32(vfpacc${ABC[0:4]});
214          vacc${ABC[4:8]} = vcvtnq_s32_f32(vfpacc${ABC[4:8]});
215        $else:
216          vacc${ABC[0:4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[0:4]}, vmagic_bias));
217          vacc${ABC[4:8]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[4:8]}, vmagic_bias));
218
219          vacc${ABC[0:4]} = vqsubq_s32(vacc${ABC[0:4]}, vmagic_bias_less_output_zero_point);
220          vacc${ABC[4:8]} = vqsubq_s32(vacc${ABC[4:8]}, vmagic_bias_less_output_zero_point);
221      $elif REQUANTIZATION == "RNDNU":
222        vacc${ABC[0:4]} = vqshlq_s32(vacc${ABC[0:4]}, vleft_pre_shift);
223        vacc${ABC[4:8]} = vqshlq_s32(vacc${ABC[4:8]}, vleft_pre_shift);
224
225        vacc${ABC[0:4]} = vqdmulhq_s32(vacc${ABC[0:4]}, vmultiplier);
226        vacc${ABC[4:8]} = vqdmulhq_s32(vacc${ABC[4:8]}, vmultiplier);
227
228        vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vleft_post_shift);
229        vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vleft_post_shift);
230
231      #if XNN_ARCH_ARM64
232        int16x8_t vacc${ABC[0:8]} = vqmovn_high_s32(vqmovn_s32(vacc${ABC[0:4]}), vacc${ABC[4:8]});
233      #else
234        int16x8_t vacc${ABC[0:8]} = vcombine_s16(vqmovn_s32(vacc${ABC[0:4]}), vqmovn_s32(vacc${ABC[4:8]}));
235      #endif
236      $if REQUANTIZATION != "FP32" or ARMV8:
237        vacc${ABC[0:8]} = vqaddq_s16(vacc${ABC[0:8]}, voutput_zero_point);
238
239      ${XINT8X8_T} vout${ABC[0:8]} = ${VQMOVXN_S16}(vacc${ABC[0:8]});
240      $if CHANNEL_TILE > 8:
241        vout${ABC[0:8]} = ${VMAX_X8}(vout${ABC[0:8]}, ${VGET_LOW_X8}(voutput_min));
242        vout${ABC[0:8]} = ${VMIN_X8}(vout${ABC[0:8]}, ${VGET_LOW_X8}(voutput_max));
243
244        if XNN_LIKELY(channels >= 8) {
245          ${VST1_X8}(output, vout${ABC[0:8]}); output += 8;
246          channels -= 8;
247        } else {
248          if (channels & 4) {
249            vst1_lane_u32((void*) output, ${VREINTERPRET_U32_X8}(vout${ABC[0:8]}), 0); output += 4;
250            vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
251          }
252          if (channels & 2) {
253            vst1_lane_u16((void*) output, ${VREINTERPRET_U16_X8}(vout${ABC[0:8]}), 0); output += 2;
254            vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
255          }
256          if (channels & 1) {
257            ${VST1_LANE_X8}(output, vout${ABC[0:8]}, 0); output += 1;
258          }
259          channels = 0;
260        }
261      $else:
262        vout${ABC[0:8]} = ${VMAX_X8}(vout${ABC[0:8]}, voutput_min);
263        vout${ABC[0:8]} = ${VMIN_X8}(vout${ABC[0:8]}, voutput_max);
264
265        if (channels & 4) {
266          vst1_lane_u32((void*) output, ${VREINTERPRET_U32_X8}(vout${ABC[0:8]}), 0); output += 4;
267          vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
268        }
269        if (channels & 2) {
270          vst1_lane_u16((void*) output, ${VREINTERPRET_U16_X8}(vout${ABC[0:8]}), 0); output += 2;
271          vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
272        }
273        if (channels & 1) {
274          ${VST1_LANE_X8}(output, vout${ABC[0:8]}, 0);
275        }
276    }${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
277  }
278}
279