1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 7$assert REQUANTIZATION == "FP32" 8$assert DATATYPE in ["QC8", "QS8", "QU8"] 9$assert CHANNEL_TILE % 8 == 0 10$assert CHANNEL_TILE >= 8 11$assert KERNEL_TILE >= 2 12#include <assert.h> 13 14#include <immintrin.h> 15 16#include <xnnpack/dwconv.h> 17#include <xnnpack/unaligned.h> 18 19 20$PARAMS_STRUCT = REQUANTIZATION.lower() + "_avx2" 21$PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower() 22$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" 23$_MM256_CVTEPX8_EPI32 = "_mm256_cvtepu8_epi32" if DATATYPE == "QU8" else "_mm256_cvtepi8_epi32" 24$_MM_PACKXS_EPI16 = "_mm_packus_epi16" if DATATYPE == "QU8" else "_mm_packs_epi16" 25$_MM_MIN_EPX8 = "_mm_min_epu8" if DATATYPE == "QU8" else "_mm_min_epi8" 26$_MM_MAX_EPX8 = "_mm_max_epu8" if DATATYPE == "QU8" else "_mm_max_epi8" 27void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx2_mul32( 28 size_t channels, 29 size_t output_width, 30 const ${XINT8_T}** input, 31 const void* weights, 32 ${XINT8_T}* output, 33 size_t input_stride, 34 size_t output_increment, 35 size_t input_offset, 36 const ${XINT8_T}* zero, 37 const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS 38{ 39 assert(channels != 0); 40 assert(output_width != 0); 41 42 $if DATATYPE == "QU8": 43 const __m256i vk_zero_point = _mm256_cvtepu16_epi32(_mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point)); 44 do { 45 $for K in range(KERNEL_TILE): 46 const ${XINT8_T}* i${K} = input[${K}]; 47 assert(i${K} != NULL); 48 if XNN_UNPREDICTABLE(i${K} != zero) { 49 i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset); 50 } 51 input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride); 52 53 size_t c = channels; 54 const void* w = weights; 55 for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { 56 __m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w); 57 $for C in range(8, CHANNEL_TILE, 8): 58 __m256i vacc${ABC[C:C+8]} = _mm256_loadu_si256((const __m256i*) ((const int32_t*) w + ${C})); 59 60 $for K in range(KERNEL_TILE): 61 62 $for C in range(0, CHANNEL_TILE, 8): 63 $if C == 0: 64 const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K})); 65 $else: 66 const __m256i vi${K}x${ABC[C:C+8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) (i${K} + ${C}))); 67 $if DATATYPE == "QU8": 68 const __m256i vk${K}x${ABC[C:C+8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))), vk_zero_point); 69 $else: 70 const __m256i vk${K}x${ABC[C:C+8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))); 71 i${K} += ${CHANNEL_TILE}; 72 73 $for C in range(0, CHANNEL_TILE, 8): 74 vacc${ABC[C:C+8]} = _mm256_add_epi32(vacc${ABC[C:C+8]}, _mm256_mullo_epi32(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]})); 75 76 w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})); 77 78 $for C in range(0, CHANNEL_TILE, 8): 79 __m256 vscaled${ABC[C:C+8]} = _mm256_cvtepi32_ps(vacc${ABC[C:C+8]}); 80 81 $if DATATYPE == "QC8": 82 const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) w); 83 $for C in range(8, CHANNEL_TILE, 8): 84 const __m256 vscale${ABC[C:C+8]} = _mm256_loadu_ps((const float*) w + ${C}); 85 w = (const void*) ((const float*) w + ${CHANNEL_TILE}); 86 $for C in range(0, CHANNEL_TILE, 8): 87 vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale${ABC[C:C+8]}); 88 $else: 89 const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale); 90 $for C in range(0, CHANNEL_TILE, 8): 91 vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale); 92 93 const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point); 94 $for C in range(0, CHANNEL_TILE, 8): 95 vscaled${ABC[C:C+8]} = _mm256_min_ps(vscaled${ABC[C:C+8]}, voutput_max_less_zero_point); 96 97 $for C in range(0, CHANNEL_TILE, 8): 98 vacc${ABC[C:C+8]} = _mm256_cvtps_epi32(vscaled${ABC[C:C+8]}); 99 100 $if CHANNEL_TILE > 8: 101 const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point); 102 $else: 103 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); 104 $for C in range(0, CHANNEL_TILE, 16): 105 $if C + 8 < CHANNEL_TILE: 106 __m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[C:C+8]}, vacc${ABC[C+8:C+16]}), voutput_zero_point); 107 $elif CHANNEL_TILE > 8: 108 __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); 109 $else: 110 __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), voutput_zero_point); 111 112 $for C in range(0, CHANNEL_TILE, 16): 113 $if C + 8 < CHANNEL_TILE: 114 __m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(_mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0)); 115 $else: 116 __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); 117 118 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); 119 $for C in range(0, CHANNEL_TILE, 16): 120 $if C + 8 < CHANNEL_TILE: 121 vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min); 122 $else: 123 vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min); 124 125 $if CHANNEL_TILE > 8: 126 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 127 $else: 128 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[C:C+8]}); 129 $for C in range(16, CHANNEL_TILE, 16): 130 $if C + 8 < CHANNEL_TILE: 131 _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); 132 $else: 133 _mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]}); 134 output += ${CHANNEL_TILE}; 135 } 136 if XNN_UNLIKELY(c != 0) { 137 $if CHANNEL_TILE > 8: 138 const ${XINT8_T}* k = (const ${XINT8_T}*) ((const int32_t*) w + ${CHANNEL_TILE}); 139 ${"do " if CHANNEL_TILE > 8 else ""}{ 140 __m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w); 141 142 $for K in range(KERNEL_TILE): 143 144 const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K})); 145 $if DATATYPE == "QU8": 146 $if CHANNEL_TILE > 8: 147 $if K == 0: 148 const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) k)), vk_zero_point); 149 $else: 150 const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}))), vk_zero_point); 151 $else: 152 const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))), vk_zero_point); 153 $else: 154 $if CHANNEL_TILE > 8: 155 $if K == 0: 156 const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) k)); 157 $else: 158 const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}))); 159 $else: 160 const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))); 161 $if CHANNEL_TILE > 8: 162 i${K} += 8; 163 164 vacc${ABC[0:8]} = _mm256_add_epi32(vacc${ABC[0:8]}, _mm256_mullo_epi32(vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]})); 165 166 $if CHANNEL_TILE > 8: 167 k += 8; 168 169 __m256 vscaled${ABC[0:8]} = _mm256_cvtepi32_ps(vacc${ABC[0:8]}); 170 $if DATATYPE == "QC8": 171 const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}))); 172 vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, vscale${ABC[0:8]}); 173 $else: 174 vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, _mm256_load_ps(params->fp32_avx2.scale)); 175 vscaled${ABC[0:8]} = _mm256_min_ps(vscaled${ABC[0:8]}, _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point)); 176 vacc${ABC[0:8]} = _mm256_cvtps_epi32(vscaled${ABC[0:8]}); 177 178 $if CHANNEL_TILE > 8: 179 w = (const void*) ((const int32_t*) w + 8); 180 181 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); 182 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point); 183 184 __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]}); 185 186 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); 187 vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min); 188 189 $if CHANNEL_TILE > 8: 190 if XNN_LIKELY(c >= 8) { 191 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 192 output += 8; 193 c -= 8; 194 } else { 195 if (c & 4) { 196 unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 197 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 198 output += 4; 199 } 200 if (c & 2) { 201 unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); 202 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 203 output += 2; 204 } 205 if (c & 1) { 206 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 207 output += 1; 208 } 209 c = 0; 210 } 211 $else: 212 if (c & 4) { 213 unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); 214 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 215 output += 4; 216 } 217 if (c & 2) { 218 unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); 219 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 220 output += 2; 221 } 222 if (c & 1) { 223 *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 224 output += 1; 225 } 226 }${" while (c != 0);" if CHANNEL_TILE > 8 else ""} 227 } 228 229 output = (${XINT8_T}*) ((uintptr_t) output + output_increment); 230 } while (--output_width != 0); 231} 232