xref: /aosp_15_r20/external/perfetto/src/profiling/perf/perf_producer.cc (revision 6dbdd20afdafa5e3ca9b8809fa73465d530080dc)
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/profiling/perf/perf_producer.h"
18 
19 #include <optional>
20 #include <random>
21 #include <utility>
22 #include <vector>
23 
24 #include <unistd.h>
25 
26 #include <unwindstack/Error.h>
27 #include <unwindstack/Unwinder.h>
28 
29 #include "perfetto/base/logging.h"
30 #include "perfetto/base/task_runner.h"
31 #include "perfetto/ext/base/file_utils.h"
32 #include "perfetto/ext/base/metatrace.h"
33 #include "perfetto/ext/base/string_utils.h"
34 #include "perfetto/ext/base/utils.h"
35 #include "perfetto/ext/base/weak_ptr.h"
36 #include "perfetto/ext/tracing/core/basic_types.h"
37 #include "perfetto/ext/tracing/core/producer.h"
38 #include "perfetto/ext/tracing/core/tracing_service.h"
39 #include "perfetto/ext/tracing/ipc/producer_ipc_client.h"
40 #include "perfetto/tracing/core/data_source_config.h"
41 #include "perfetto/tracing/core/data_source_descriptor.h"
42 #include "src/profiling/common/callstack_trie.h"
43 #include "src/profiling/common/proc_cmdline.h"
44 #include "src/profiling/common/producer_support.h"
45 #include "src/profiling/common/profiler_guardrails.h"
46 #include "src/profiling/common/unwind_support.h"
47 #include "src/profiling/perf/common_types.h"
48 #include "src/profiling/perf/event_reader.h"
49 
50 #include "protos/perfetto/common/builtin_clock.pbzero.h"
51 #include "protos/perfetto/common/perf_events.gen.h"
52 #include "protos/perfetto/common/perf_events.pbzero.h"
53 #include "protos/perfetto/config/profiling/perf_event_config.gen.h"
54 #include "protos/perfetto/trace/profiling/profile_packet.pbzero.h"
55 #include "protos/perfetto/trace/trace_packet.pbzero.h"
56 #include "protos/perfetto/trace/trace_packet_defaults.pbzero.h"
57 
58 namespace perfetto {
59 namespace profiling {
60 namespace {
61 
62 // TODO(b/151835887): on Android, when using signals, there exists a vulnerable
63 // window between a process image being replaced by execve, and the new
64 // libc instance reinstalling the proper signal handlers. During this window,
65 // the signal disposition is defaulted to terminating the process.
66 // This is a best-effort mitigation from the daemon's side, using a heuristic
67 // that most execve calls follow a fork. So if we get a sample for a very fresh
68 // process, the grace period will give it a chance to get to
69 // a properly initialised state prior to getting signalled. This doesn't help
70 // cases when a mature process calls execve, or when the target gets descheduled
71 // (since this is a naive walltime wait).
72 // The proper fix is in the platform, see bug for progress.
73 constexpr uint32_t kProcDescriptorsAndroidDelayMs = 50;
74 
75 constexpr uint32_t kMemoryLimitCheckPeriodMs = 1000;
76 
77 constexpr uint32_t kInitialConnectionBackoffMs = 100;
78 constexpr uint32_t kMaxConnectionBackoffMs = 30 * 1000;
79 
80 constexpr char kProducerName[] = "perfetto.traced_perf";
81 constexpr char kDataSourceName[] = "linux.perf";
82 
NumberOfCpus()83 size_t NumberOfCpus() {
84   return static_cast<size_t>(sysconf(_SC_NPROCESSORS_CONF));
85 }
86 
GetOnlineCpus()87 std::vector<uint32_t> GetOnlineCpus() {
88   size_t cpu_count = NumberOfCpus();
89   if (cpu_count == 0) {
90     return {};
91   }
92 
93   static constexpr char kOnlineValue[] = "1\n";
94   std::vector<uint32_t> online_cpus;
95   online_cpus.reserve(cpu_count);
96   for (uint32_t cpu = 0; cpu < cpu_count; ++cpu) {
97     std::string res;
98     base::StackString<1024> path("/sys/devices/system/cpu/cpu%u/online", cpu);
99     if (!base::ReadFile(path.c_str(), &res)) {
100       // Always consider CPU 0 to be online if the "online" file does not exist
101       // for it. There seem to be several assumptions in the kernel which make
102       // CPU 0 special so this is a pretty safe bet.
103       if (cpu != 0) {
104         return {};
105       }
106       res = kOnlineValue;
107     }
108     if (res != kOnlineValue) {
109       continue;
110     }
111     online_cpus.push_back(cpu);
112   }
113   return online_cpus;
114 }
115 
ToBuiltinClock(int32_t clockid)116 int32_t ToBuiltinClock(int32_t clockid) {
117   switch (clockid) {
118     case CLOCK_REALTIME:
119       return protos::pbzero::BUILTIN_CLOCK_REALTIME;
120     case CLOCK_MONOTONIC:
121       return protos::pbzero::BUILTIN_CLOCK_MONOTONIC;
122     case CLOCK_MONOTONIC_RAW:
123       return protos::pbzero::BUILTIN_CLOCK_MONOTONIC_RAW;
124     case CLOCK_BOOTTIME:
125       return protos::pbzero::BUILTIN_CLOCK_BOOTTIME;
126     // Should never get invalid input here as otherwise the syscall itself
127     // would've failed earlier.
128     default:
129       return protos::pbzero::BUILTIN_CLOCK_UNKNOWN;
130   }
131 }
132 
StartTracePacket(TraceWriter * trace_writer)133 TraceWriter::TracePacketHandle StartTracePacket(TraceWriter* trace_writer) {
134   auto packet = trace_writer->NewTracePacket();
135   packet->set_sequence_flags(
136       protos::pbzero::TracePacket::SEQ_NEEDS_INCREMENTAL_STATE);
137   return packet;
138 }
139 
WritePerfEventDefaultsPacket(const EventConfig & event_config,TraceWriter * trace_writer)140 void WritePerfEventDefaultsPacket(const EventConfig& event_config,
141                                   TraceWriter* trace_writer) {
142   auto packet = trace_writer->NewTracePacket();
143   packet->set_timestamp(static_cast<uint64_t>(base::GetBootTimeNs().count()));
144   packet->set_timestamp_clock_id(protos::pbzero::BUILTIN_CLOCK_BOOTTIME);
145 
146   // start new incremental state generation:
147   packet->set_sequence_flags(
148       protos::pbzero::TracePacket::SEQ_INCREMENTAL_STATE_CLEARED);
149 
150   // default packet timestamp clock for the samples:
151   perf_event_attr* perf_attr = event_config.perf_attr();
152   auto* defaults = packet->set_trace_packet_defaults();
153   int32_t builtin_clock = ToBuiltinClock(perf_attr->clockid);
154   defaults->set_timestamp_clock_id(static_cast<uint32_t>(builtin_clock));
155 
156   auto* perf_defaults = defaults->set_perf_sample_defaults();
157   auto* timebase_pb = perf_defaults->set_timebase();
158 
159   // frequency/period:
160   if (perf_attr->freq) {
161     timebase_pb->set_frequency(perf_attr->sample_freq);
162   } else {
163     timebase_pb->set_period(perf_attr->sample_period);
164   }
165 
166   // timebase event:
167   const PerfCounter& timebase = event_config.timebase_event();
168   switch (timebase.event_type()) {
169     case PerfCounter::Type::kBuiltinCounter: {
170       timebase_pb->set_counter(
171           static_cast<protos::pbzero::PerfEvents::Counter>(timebase.counter));
172       break;
173     }
174     case PerfCounter::Type::kTracepoint: {
175       auto* tracepoint_pb = timebase_pb->set_tracepoint();
176       tracepoint_pb->set_name(timebase.tracepoint_name);
177       tracepoint_pb->set_filter(timebase.tracepoint_filter);
178       break;
179     }
180     case PerfCounter::Type::kRawEvent: {
181       auto* raw_pb = timebase_pb->set_raw_event();
182       raw_pb->set_type(timebase.attr_type);
183       raw_pb->set_config(timebase.attr_config);
184       raw_pb->set_config1(timebase.attr_config1);
185       raw_pb->set_config2(timebase.attr_config2);
186       break;
187     }
188   }
189 
190   // optional name to identify the counter during parsing:
191   if (!timebase.name.empty()) {
192     timebase_pb->set_name(timebase.name);
193   }
194 
195   // follower events:
196   for (const auto& e : event_config.follower_events()) {
197     auto* followers_pb = perf_defaults->add_followers();
198     followers_pb->set_name(e.name);
199 
200     switch (e.event_type()) {
201       case PerfCounter::Type::kBuiltinCounter: {
202         followers_pb->set_counter(
203             static_cast<protos::pbzero::PerfEvents::Counter>(e.counter));
204         break;
205       }
206       case PerfCounter::Type::kTracepoint: {
207         auto* tracepoint_pb = followers_pb->set_tracepoint();
208         tracepoint_pb->set_name(e.tracepoint_name);
209         tracepoint_pb->set_filter(e.tracepoint_filter);
210         break;
211       }
212       case PerfCounter::Type::kRawEvent: {
213         auto* raw_pb = followers_pb->set_raw_event();
214         raw_pb->set_type(e.attr_type);
215         raw_pb->set_config(e.attr_config);
216         raw_pb->set_config1(e.attr_config1);
217         raw_pb->set_config2(e.attr_config2);
218         break;
219       }
220     }
221   }
222 
223   // Not setting timebase.timestamp_clock since the field that matters during
224   // parsing is the root timestamp_clock_id set above.
225 
226   // Record the random shard we've chosen so that the post-processing can infer
227   // which processes would've been unwound if sampled. In particular this lets
228   // us distinguish between "running but not chosen" and "running and chosen,
229   // but not sampled" cases.
230   const auto& process_sharding = event_config.filter().process_sharding;
231   if (process_sharding.has_value()) {
232     perf_defaults->set_process_shard_count(process_sharding->shard_count);
233     perf_defaults->set_chosen_process_shard(process_sharding->chosen_shard);
234   }
235 }
236 
TimeToNextReadTickMs(DataSourceInstanceID ds_id,uint32_t period_ms)237 uint32_t TimeToNextReadTickMs(DataSourceInstanceID ds_id, uint32_t period_ms) {
238   // Normally, we'd schedule the next tick at the next |period_ms|
239   // boundary of the boot clock. However, to avoid aligning the read tasks of
240   // all concurrent data sources, we select a deterministic offset based on the
241   // data source id.
242   std::minstd_rand prng(static_cast<std::minstd_rand::result_type>(ds_id));
243   std::uniform_int_distribution<uint32_t> dist(0, period_ms - 1);
244   uint32_t ds_period_offset = dist(prng);
245 
246   uint64_t now_ms = static_cast<uint64_t>(base::GetWallTimeMs().count());
247   return period_ms - ((now_ms - ds_period_offset) % period_ms);
248 }
249 
ToCpuModeEnum(uint16_t perf_cpu_mode)250 protos::pbzero::Profiling::CpuMode ToCpuModeEnum(uint16_t perf_cpu_mode) {
251   using Profiling = protos::pbzero::Profiling;
252   switch (perf_cpu_mode) {
253     case PERF_RECORD_MISC_KERNEL:
254       return Profiling::MODE_KERNEL;
255     case PERF_RECORD_MISC_USER:
256       return Profiling::MODE_USER;
257     case PERF_RECORD_MISC_HYPERVISOR:
258       return Profiling::MODE_HYPERVISOR;
259     case PERF_RECORD_MISC_GUEST_KERNEL:
260       return Profiling::MODE_GUEST_KERNEL;
261     case PERF_RECORD_MISC_GUEST_USER:
262       return Profiling::MODE_GUEST_USER;
263     default:
264       return Profiling::MODE_UNKNOWN;
265   }
266 }
267 
ToProtoEnum(unwindstack::ErrorCode error_code)268 protos::pbzero::Profiling::StackUnwindError ToProtoEnum(
269     unwindstack::ErrorCode error_code) {
270   using Profiling = protos::pbzero::Profiling;
271   switch (error_code) {
272     case unwindstack::ERROR_NONE:
273       return Profiling::UNWIND_ERROR_NONE;
274     case unwindstack::ERROR_MEMORY_INVALID:
275       return Profiling::UNWIND_ERROR_MEMORY_INVALID;
276     case unwindstack::ERROR_UNWIND_INFO:
277       return Profiling::UNWIND_ERROR_UNWIND_INFO;
278     case unwindstack::ERROR_UNSUPPORTED:
279       return Profiling::UNWIND_ERROR_UNSUPPORTED;
280     case unwindstack::ERROR_INVALID_MAP:
281       return Profiling::UNWIND_ERROR_INVALID_MAP;
282     case unwindstack::ERROR_MAX_FRAMES_EXCEEDED:
283       return Profiling::UNWIND_ERROR_MAX_FRAMES_EXCEEDED;
284     case unwindstack::ERROR_REPEATED_FRAME:
285       return Profiling::UNWIND_ERROR_REPEATED_FRAME;
286     case unwindstack::ERROR_INVALID_ELF:
287       return Profiling::UNWIND_ERROR_INVALID_ELF;
288     case unwindstack::ERROR_SYSTEM_CALL:
289       return Profiling::UNWIND_ERROR_SYSTEM_CALL;
290     case unwindstack::ERROR_THREAD_TIMEOUT:
291       return Profiling::UNWIND_ERROR_THREAD_TIMEOUT;
292     case unwindstack::ERROR_THREAD_DOES_NOT_EXIST:
293       return Profiling::UNWIND_ERROR_THREAD_DOES_NOT_EXIST;
294     case unwindstack::ERROR_BAD_ARCH:
295       return Profiling::UNWIND_ERROR_BAD_ARCH;
296     case unwindstack::ERROR_MAPS_PARSE:
297       return Profiling::UNWIND_ERROR_MAPS_PARSE;
298     case unwindstack::ERROR_INVALID_PARAMETER:
299       return Profiling::UNWIND_ERROR_INVALID_PARAMETER;
300     case unwindstack::ERROR_PTRACE_CALL:
301       return Profiling::UNWIND_ERROR_PTRACE_CALL;
302   }
303   return Profiling::UNWIND_ERROR_UNKNOWN;
304 }
305 
306 }  // namespace
307 
308 // static
ShouldRejectDueToFilter(pid_t pid,const TargetFilter & filter,bool skip_cmdline,base::FlatSet<std::string> * additional_cmdlines,std::function<bool (std::string *)> read_proc_pid_cmdline)309 bool PerfProducer::ShouldRejectDueToFilter(
310     pid_t pid,
311     const TargetFilter& filter,
312     bool skip_cmdline,
313     base::FlatSet<std::string>* additional_cmdlines,
314     std::function<bool(std::string*)> read_proc_pid_cmdline) {
315   PERFETTO_CHECK(additional_cmdlines);
316 
317   std::string cmdline;
318   bool have_cmdline = false;
319   if (!skip_cmdline)
320     have_cmdline = read_proc_pid_cmdline(&cmdline);
321 
322   const char* binname = "";
323   if (have_cmdline) {
324     binname = glob_aware::FindBinaryName(cmdline.c_str(), cmdline.size());
325   }
326 
327   auto has_matching_pattern = [](const std::vector<std::string>& patterns,
328                                  const char* cmd, const char* name) {
329     for (const std::string& pattern : patterns) {
330       if (glob_aware::MatchGlobPattern(pattern.c_str(), cmd, name)) {
331         return true;
332       }
333     }
334     return false;
335   };
336 
337   if (have_cmdline &&
338       has_matching_pattern(filter.exclude_cmdlines, cmdline.c_str(), binname)) {
339     PERFETTO_DLOG("Explicitly rejecting samples for pid [%d] due to cmdline",
340                   static_cast<int>(pid));
341     return true;
342   }
343   if (filter.exclude_pids.count(pid)) {
344     PERFETTO_DLOG("Explicitly rejecting samples for pid [%d] due to pid",
345                   static_cast<int>(pid));
346     return true;
347   }
348 
349   if (have_cmdline &&
350       has_matching_pattern(filter.cmdlines, cmdline.c_str(), binname)) {
351     return false;
352   }
353   if (filter.pids.count(pid)) {
354     return false;
355   }
356 
357   // Empty allow filter means keep everything that isn't explicitly excluded.
358   if (filter.cmdlines.empty() && filter.pids.empty() &&
359       !filter.additional_cmdline_count &&
360       !filter.process_sharding.has_value()) {
361     return false;
362   }
363 
364   // Niche option: process sharding to amortise systemwide unwinding costs.
365   // Selects a subset of all processes by using the low order bits of their pid.
366   if (filter.process_sharding.has_value()) {
367     uint32_t upid = static_cast<uint32_t>(pid);
368     if (upid % filter.process_sharding->shard_count ==
369         filter.process_sharding->chosen_shard) {
370       PERFETTO_DLOG("Process sharding: keeping pid [%d]",
371                     static_cast<int>(pid));
372       return false;
373     } else {
374       PERFETTO_DLOG("Process sharding: rejecting pid [%d]",
375                     static_cast<int>(pid));
376       return true;
377     }
378   }
379 
380   // Niche option: additionally remember the first seen N process cmdlines, and
381   // keep all processes with those names.
382   if (have_cmdline) {
383     if (additional_cmdlines->count(cmdline)) {
384       return false;
385     }
386     if (additional_cmdlines->size() < filter.additional_cmdline_count) {
387       additional_cmdlines->insert(cmdline);
388       return false;
389     }
390   }
391 
392   PERFETTO_DLOG("Rejecting samples for pid [%d]", static_cast<int>(pid));
393   return true;
394 }
395 
PerfProducer(ProcDescriptorGetter * proc_fd_getter,base::TaskRunner * task_runner)396 PerfProducer::PerfProducer(ProcDescriptorGetter* proc_fd_getter,
397                            base::TaskRunner* task_runner)
398     : task_runner_(task_runner),
399       proc_fd_getter_(proc_fd_getter),
400       unwinding_worker_(this),
401       weak_factory_(this) {
402   proc_fd_getter->SetDelegate(this);
403 }
404 
SetupDataSource(DataSourceInstanceID,const DataSourceConfig &)405 void PerfProducer::SetupDataSource(DataSourceInstanceID,
406                                    const DataSourceConfig&) {}
407 
StartDataSource(DataSourceInstanceID ds_id,const DataSourceConfig & config)408 void PerfProducer::StartDataSource(DataSourceInstanceID ds_id,
409                                    const DataSourceConfig& config) {
410   uint64_t tracing_session_id = config.tracing_session_id();
411   PERFETTO_LOG("StartDataSource(ds %zu, session %" PRIu64 ", name %s)",
412                static_cast<size_t>(ds_id), tracing_session_id,
413                config.name().c_str());
414 
415   if (config.name() == MetatraceWriter::kDataSourceName) {
416     StartMetatraceSource(ds_id, static_cast<BufferID>(config.target_buffer()));
417     return;
418   }
419 
420   // linux.perf data source
421   if (config.name() != kDataSourceName)
422     return;
423 
424   // Tracepoint name -> id lookup in case the config asks for tracepoints:
425   auto tracepoint_id_lookup = [this](const std::string& group,
426                                      const std::string& name) {
427     if (!tracefs_)  // lazy init or retry
428       tracefs_ = FtraceProcfs::CreateGuessingMountPoint();
429     if (!tracefs_)  // still didn't find an accessible tracefs
430       return 0u;
431     return tracefs_->ReadEventId(group, name);
432   };
433 
434   protos::gen::PerfEventConfig event_config_pb;
435   if (!event_config_pb.ParseFromString(config.perf_event_config_raw())) {
436     PERFETTO_ELOG("PerfEventConfig could not be parsed.");
437     return;
438   }
439 
440   // Unlikely: handle a callstack sampling option that shares a random decision
441   // between all data sources within a tracing session. Instead of introducing
442   // session-scoped data, we replicate the decision in each per-DS EventConfig.
443   std::optional<ProcessSharding> process_sharding;
444   uint32_t shard_count =
445       event_config_pb.callstack_sampling().scope().process_shard_count();
446   if (shard_count > 0) {
447     process_sharding =
448         GetOrChooseCallstackProcessShard(tracing_session_id, shard_count);
449   }
450 
451   std::optional<EventConfig> event_config = EventConfig::Create(
452       event_config_pb, config, process_sharding, tracepoint_id_lookup);
453   if (!event_config.has_value()) {
454     PERFETTO_ELOG("PerfEventConfig rejected.");
455     return;
456   }
457 
458   std::vector<uint32_t> online_cpus = GetOnlineCpus();
459   if (online_cpus.empty()) {
460     PERFETTO_ELOG("No online CPUs found.");
461     return;
462   }
463 
464   std::vector<EventReader> per_cpu_readers;
465   for (uint32_t cpu : online_cpus) {
466     std::optional<EventReader> event_reader =
467         EventReader::ConfigureEvents(cpu, event_config.value());
468     if (!event_reader.has_value()) {
469       PERFETTO_ELOG("Failed to set up perf events for cpu%" PRIu32
470                     ", discarding data source.",
471                     cpu);
472       return;
473     }
474     per_cpu_readers.emplace_back(std::move(event_reader.value()));
475   }
476 
477   auto buffer_id = static_cast<BufferID>(config.target_buffer());
478   auto writer = endpoint_->CreateTraceWriter(buffer_id);
479 
480   // Construct the data source instance.
481   std::map<DataSourceInstanceID, DataSourceState>::iterator ds_it;
482   bool inserted;
483   std::tie(ds_it, inserted) = data_sources_.emplace(
484       std::piecewise_construct, std::forward_as_tuple(ds_id),
485       std::forward_as_tuple(event_config.value(), tracing_session_id,
486                             std::move(writer), std::move(per_cpu_readers)));
487   PERFETTO_CHECK(inserted);
488   DataSourceState& ds = ds_it->second;
489 
490   // Start the configured events.
491   for (auto& per_cpu_reader : ds.per_cpu_readers) {
492     per_cpu_reader.EnableEvents();
493   }
494 
495   WritePerfEventDefaultsPacket(ds.event_config, ds.trace_writer.get());
496 
497   InterningOutputTracker::WriteFixedInterningsPacket(
498       ds_it->second.trace_writer.get(),
499       protos::pbzero::TracePacket::SEQ_NEEDS_INCREMENTAL_STATE);
500 
501   // Inform unwinder of the new data source instance, and optionally start a
502   // periodic task to clear its cached state.
503   auto unwind_mode = (ds.event_config.unwind_mode() ==
504                       protos::gen::PerfEventConfig::UNWIND_FRAME_POINTER)
505                          ? Unwinder::UnwindMode::kFramePointer
506                          : Unwinder::UnwindMode::kUnwindStack;
507   unwinding_worker_->PostStartDataSource(ds_id, ds.event_config.kernel_frames(),
508                                          unwind_mode);
509   if (ds.event_config.unwind_state_clear_period_ms()) {
510     unwinding_worker_->PostClearCachedStatePeriodic(
511         ds_id, ds.event_config.unwind_state_clear_period_ms());
512   }
513 
514   // Kick off periodic read task.
515   auto tick_period_ms = ds.event_config.read_tick_period_ms();
516   auto weak_this = weak_factory_.GetWeakPtr();
517   task_runner_->PostDelayedTask(
518       [weak_this, ds_id] {
519         if (weak_this)
520           weak_this->TickDataSourceRead(ds_id);
521       },
522       TimeToNextReadTickMs(ds_id, tick_period_ms));
523 
524   // Optionally kick off periodic memory footprint limit check.
525   uint32_t max_daemon_memory_kb = event_config_pb.max_daemon_memory_kb();
526   if (max_daemon_memory_kb > 0) {
527     task_runner_->PostDelayedTask(
528         [weak_this, ds_id, max_daemon_memory_kb] {
529           if (weak_this)
530             weak_this->CheckMemoryFootprintPeriodic(ds_id,
531                                                     max_daemon_memory_kb);
532         },
533         kMemoryLimitCheckPeriodMs);
534   }
535 }
536 
CheckMemoryFootprintPeriodic(DataSourceInstanceID ds_id,uint32_t max_daemon_memory_kb)537 void PerfProducer::CheckMemoryFootprintPeriodic(DataSourceInstanceID ds_id,
538                                                 uint32_t max_daemon_memory_kb) {
539   auto ds_it = data_sources_.find(ds_id);
540   if (ds_it == data_sources_.end())
541     return;  // stop recurring
542 
543   GuardrailConfig gconfig = {};
544   gconfig.memory_guardrail_kb = max_daemon_memory_kb;
545 
546   ProfilerMemoryGuardrails footprint_snapshot;
547   if (footprint_snapshot.IsOverMemoryThreshold(gconfig)) {
548     PurgeDataSource(ds_id);
549     return;  // stop recurring
550   }
551 
552   // repost
553   auto weak_this = weak_factory_.GetWeakPtr();
554   task_runner_->PostDelayedTask(
555       [weak_this, ds_id, max_daemon_memory_kb] {
556         if (weak_this)
557           weak_this->CheckMemoryFootprintPeriodic(ds_id, max_daemon_memory_kb);
558       },
559       kMemoryLimitCheckPeriodMs);
560 }
561 
StopDataSource(DataSourceInstanceID ds_id)562 void PerfProducer::StopDataSource(DataSourceInstanceID ds_id) {
563   PERFETTO_LOG("StopDataSource(%zu)", static_cast<size_t>(ds_id));
564 
565   // Metatrace: stop immediately (will miss the events from the
566   // asynchronous shutdown of the primary data source).
567   auto meta_it = metatrace_writers_.find(ds_id);
568   if (meta_it != metatrace_writers_.end()) {
569     meta_it->second.WriteAllAndFlushTraceWriter([] {});
570     metatrace_writers_.erase(meta_it);
571     return;
572   }
573 
574   auto ds_it = data_sources_.find(ds_id);
575   if (ds_it == data_sources_.end()) {
576     // Most likely, the source is missing due to an abrupt stop (via
577     // |PurgeDataSource|). Tell the service that we've stopped the source now,
578     // so that it doesn't wait for the ack until the timeout.
579     endpoint_->NotifyDataSourceStopped(ds_id);
580     return;
581   }
582 
583   // Start shutting down the reading frontend, which will propagate the stop
584   // further as the intermediate buffers are cleared.
585   DataSourceState& ds = ds_it->second;
586   InitiateReaderStop(&ds);
587 }
588 
589 // The perf data sources ignore flush requests, as flushing would be
590 // unnecessarily complicated given out-of-order unwinding and proc-fd timeouts.
591 // Instead of responding to explicit flushes, we can ensure that we're otherwise
592 // well-behaved (do not reorder packets too much), and let the service scrape
593 // the SMB.
Flush(FlushRequestID flush_id,const DataSourceInstanceID * data_source_ids,size_t num_data_sources,FlushFlags)594 void PerfProducer::Flush(FlushRequestID flush_id,
595                          const DataSourceInstanceID* data_source_ids,
596                          size_t num_data_sources,
597                          FlushFlags) {
598   // Flush metatracing if requested.
599   for (size_t i = 0; i < num_data_sources; i++) {
600     auto ds_id = data_source_ids[i];
601     PERFETTO_DLOG("Flush(%zu)", static_cast<size_t>(ds_id));
602 
603     auto meta_it = metatrace_writers_.find(ds_id);
604     if (meta_it != metatrace_writers_.end()) {
605       meta_it->second.WriteAllAndFlushTraceWriter([] {});
606     }
607   }
608 
609   endpoint_->NotifyFlushComplete(flush_id);
610 }
611 
ClearIncrementalState(const DataSourceInstanceID * data_source_ids,size_t num_data_sources)612 void PerfProducer::ClearIncrementalState(
613     const DataSourceInstanceID* data_source_ids,
614     size_t num_data_sources) {
615   for (size_t i = 0; i < num_data_sources; i++) {
616     auto ds_id = data_source_ids[i];
617     PERFETTO_DLOG("ClearIncrementalState(%zu)", static_cast<size_t>(ds_id));
618 
619     if (metatrace_writers_.find(ds_id) != metatrace_writers_.end())
620       continue;
621 
622     auto ds_it = data_sources_.find(ds_id);
623     if (ds_it == data_sources_.end()) {
624       PERFETTO_DLOG("ClearIncrementalState(%zu): did not find matching entry",
625                     static_cast<size_t>(ds_id));
626       continue;
627     }
628     DataSourceState& ds = ds_it->second;
629 
630     WritePerfEventDefaultsPacket(ds.event_config, ds.trace_writer.get());
631 
632     // Forget which incremental state we've emitted before.
633     ds.interning_output.ClearHistory();
634     InterningOutputTracker::WriteFixedInterningsPacket(
635         ds.trace_writer.get(),
636         protos::pbzero::TracePacket::SEQ_NEEDS_INCREMENTAL_STATE);
637 
638     // Drop the cross-datasource callstack interning trie. This is not
639     // necessary for correctness (the preceding step is sufficient). However,
640     // incremental clearing is likely to be used in ring buffer traces, where
641     // it makes sense to reset the trie's size periodically, and this is a
642     // reasonable point to do so. The trie keeps the monotonic interning IDs,
643     // so there is no confusion for other concurrent data sources. We do not
644     // bother with clearing concurrent sources' interning output trackers as
645     // their footprint should be trivial.
646     callstack_trie_.ClearTrie();
647   }
648 }
649 
TickDataSourceRead(DataSourceInstanceID ds_id)650 void PerfProducer::TickDataSourceRead(DataSourceInstanceID ds_id) {
651   auto it = data_sources_.find(ds_id);
652   if (it == data_sources_.end()) {
653     PERFETTO_DLOG("TickDataSourceRead(%zu): source gone",
654                   static_cast<size_t>(ds_id));
655     return;
656   }
657   DataSourceState& ds = it->second;
658 
659   PERFETTO_METATRACE_SCOPED(TAG_PRODUCER, PROFILER_READ_TICK);
660 
661   // Make a pass over all per-cpu readers.
662   uint64_t max_samples = ds.event_config.samples_per_tick_limit();
663   bool more_records_available = false;
664   for (EventReader& reader : ds.per_cpu_readers) {
665     if (ReadAndParsePerCpuBuffer(&reader, max_samples, ds_id, &ds)) {
666       more_records_available = true;
667     }
668   }
669 
670   // Wake up the unwinder as we've (likely) pushed samples into its queue.
671   unwinding_worker_->PostProcessQueue();
672 
673   if (PERFETTO_UNLIKELY(ds.status == DataSourceState::Status::kShuttingDown) &&
674       !more_records_available) {
675     unwinding_worker_->PostInitiateDataSourceStop(ds_id);
676   } else {
677     // otherwise, keep reading
678     auto tick_period_ms = it->second.event_config.read_tick_period_ms();
679     auto weak_this = weak_factory_.GetWeakPtr();
680     task_runner_->PostDelayedTask(
681         [weak_this, ds_id] {
682           if (weak_this)
683             weak_this->TickDataSourceRead(ds_id);
684         },
685         TimeToNextReadTickMs(ds_id, tick_period_ms));
686   }
687 }
688 
ReadAndParsePerCpuBuffer(EventReader * reader,uint64_t max_samples,DataSourceInstanceID ds_id,DataSourceState * ds)689 bool PerfProducer::ReadAndParsePerCpuBuffer(EventReader* reader,
690                                             uint64_t max_samples,
691                                             DataSourceInstanceID ds_id,
692                                             DataSourceState* ds) {
693   PERFETTO_METATRACE_SCOPED(TAG_PRODUCER, PROFILER_READ_CPU);
694 
695   // If the kernel ring buffer dropped data, record it in the trace.
696   size_t cpu = reader->cpu();
697   auto records_lost_callback = [this, ds_id, cpu](uint64_t records_lost) {
698     auto weak_this = weak_factory_.GetWeakPtr();
699     task_runner_->PostTask([weak_this, ds_id, cpu, records_lost] {
700       if (weak_this)
701         weak_this->EmitRingBufferLoss(ds_id, cpu, records_lost);
702     });
703   };
704 
705   for (uint64_t i = 0; i < max_samples; i++) {
706     std::optional<ParsedSample> sample =
707         reader->ReadUntilSample(records_lost_callback);
708     if (!sample) {
709       return false;  // caught up to the writer
710     }
711 
712     // Counter-only mode: skip the unwinding stage, serialise the sample
713     // immediately.
714     const EventConfig& event_config = ds->event_config;
715     if (!event_config.sample_callstacks()) {
716       CompletedSample output;
717       output.common = sample->common;
718       EmitSample(ds_id, std::move(output));
719       continue;
720     }
721 
722     // Sampling either or both of userspace and kernel callstacks.
723     pid_t pid = sample->common.pid;
724     auto& process_state = ds->process_states[pid];  // insert if new
725 
726     // Asynchronous proc-fd lookup timed out.
727     if (process_state == ProcessTrackingStatus::kFdsTimedOut) {
728       PERFETTO_DLOG("Skipping sample for pid [%d]: kFdsTimedOut",
729                     static_cast<int>(pid));
730       EmitSkippedSample(ds_id, std::move(sample.value()),
731                         SampleSkipReason::kReadStage);
732       continue;
733     }
734 
735     // Previously excluded, e.g. due to failing the target filter check.
736     if (process_state == ProcessTrackingStatus::kRejected) {
737       PERFETTO_DLOG("Skipping sample for pid [%d]: kRejected",
738                     static_cast<int>(pid));
739       continue;
740     }
741 
742     // Seeing pid for the first time. We need to consider whether the process
743     // is a kernel thread, and which callstacks we're recording.
744     //
745     // {user} stacks -> user processes: signal for proc-fd lookup
746     //               -> kthreads: reject
747     //
748     // {kernel} stacks -> user processes: accept without proc-fds
749     //                 -> kthreads: accept without proc-fds
750     //
751     // {kernel+user} stacks -> user processes: signal for proc-fd lookup
752     //                      -> kthreads: accept without proc-fds
753     //
754     if (process_state == ProcessTrackingStatus::kInitial) {
755       PERFETTO_DLOG("New pid: [%d]", static_cast<int>(pid));
756 
757       // Kernel threads (which have no userspace state) are never relevant if
758       // we're not recording kernel callchains.
759       bool is_kthread = !sample->regs;  // no userspace regs
760       if (is_kthread && !event_config.kernel_frames()) {
761         process_state = ProcessTrackingStatus::kRejected;
762         continue;
763       }
764 
765       // Check whether samples for this new process should be dropped due to
766       // the target filtering. Kernel threads don't have a cmdline, but we
767       // still check against pid inclusion/exclusion.
768       if (ShouldRejectDueToFilter(
769               pid, event_config.filter(), is_kthread, &ds->additional_cmdlines,
770               [pid](std::string* cmdline) {
771                 return glob_aware::ReadProcCmdlineForPID(pid, cmdline);
772               })) {
773         process_state = ProcessTrackingStatus::kRejected;
774         continue;
775       }
776 
777       // At this point, sampled process is known to be of interest.
778       if (!is_kthread && event_config.user_frames()) {
779         // Start resolving the proc-fds. Response is async.
780         process_state = ProcessTrackingStatus::kFdsResolving;
781         InitiateDescriptorLookup(ds_id, pid,
782                                  event_config.remote_descriptor_timeout_ms());
783         // note: fallthrough
784       } else {
785         // Either a kernel thread (no need to obtain proc-fds), or a userspace
786         // process but we're not recording userspace callstacks.
787         process_state = ProcessTrackingStatus::kAccepted;
788         unwinding_worker_->PostRecordNoUserspaceProcess(ds_id, pid);
789         // note: fallthrough
790       }
791     }
792 
793     PERFETTO_CHECK(process_state == ProcessTrackingStatus::kAccepted ||
794                    process_state == ProcessTrackingStatus::kFdsResolving);
795 
796     // If we're only interested in the kernel callchains, then userspace
797     // process samples are relevant only if they were sampled during kernel
798     // context.
799     if (!event_config.user_frames() &&
800         sample->common.cpu_mode == PERF_RECORD_MISC_USER) {
801       PERFETTO_DLOG("Skipping usermode sample for kernel-only config");
802       continue;
803     }
804 
805     // Optionally: drop sample if above a given threshold of sampled stacks
806     // that are waiting in the unwinding queue.
807     uint64_t max_footprint_bytes = event_config.max_enqueued_footprint_bytes();
808     uint64_t sample_stack_size = sample->stack.size();
809     if (max_footprint_bytes) {
810       uint64_t footprint_bytes = unwinding_worker_->GetEnqueuedFootprint();
811       if (footprint_bytes + sample_stack_size >= max_footprint_bytes) {
812         PERFETTO_DLOG("Skipping sample enqueueing due to footprint limit.");
813         EmitSkippedSample(ds_id, std::move(sample.value()),
814                           SampleSkipReason::kUnwindEnqueue);
815         continue;
816       }
817     }
818 
819     // Push the sample into the unwinding queue if there is room.
820     auto& queue = unwinding_worker_->unwind_queue();
821     WriteView write_view = queue.BeginWrite();
822     if (write_view.valid) {
823       queue.at(write_view.write_pos) =
824           UnwindEntry{ds_id, std::move(sample.value())};
825       queue.CommitWrite();
826       unwinding_worker_->IncrementEnqueuedFootprint(sample_stack_size);
827     } else {
828       PERFETTO_DLOG("Unwinder queue full, skipping sample");
829       EmitSkippedSample(ds_id, std::move(sample.value()),
830                         SampleSkipReason::kUnwindEnqueue);
831     }
832   }  // for (i < max_samples)
833 
834   // Most likely more events in the kernel buffer. Though we might be exactly on
835   // the boundary due to |max_samples|.
836   return true;
837 }
838 
839 // Note: first-fit makes descriptor request fulfillment not true FIFO. But the
840 // edge-cases where it matters are very unlikely.
OnProcDescriptors(pid_t pid,uid_t uid,base::ScopedFile maps_fd,base::ScopedFile mem_fd)841 void PerfProducer::OnProcDescriptors(pid_t pid,
842                                      uid_t uid,
843                                      base::ScopedFile maps_fd,
844                                      base::ScopedFile mem_fd) {
845   // Find first-fit data source that requested descriptors for the process.
846   for (auto& it : data_sources_) {
847     DataSourceState& ds = it.second;
848     auto proc_status_it = ds.process_states.find(pid);
849     if (proc_status_it == ds.process_states.end())
850       continue;
851 
852     // TODO(rsavitski): consider checking ProcessTrackingStatus before
853     // CanProfile.
854     if (!CanProfile(ds.event_config.raw_ds_config(), uid,
855                     ds.event_config.target_installed_by())) {
856       PERFETTO_DLOG("Not profileable: pid [%d], uid [%d] for DS [%zu]",
857                     static_cast<int>(pid), static_cast<int>(uid),
858                     static_cast<size_t>(it.first));
859       continue;
860     }
861 
862     // Match against either resolving, or expired state. In the latter
863     // case, it means that the async response was slow enough that we've marked
864     // the lookup as expired (but can now recover for future samples).
865     auto proc_status = proc_status_it->second;
866     if (proc_status == ProcessTrackingStatus::kFdsResolving ||
867         proc_status == ProcessTrackingStatus::kFdsTimedOut) {
868       PERFETTO_DLOG("Handing off proc-fds for pid [%d] to DS [%zu]",
869                     static_cast<int>(pid), static_cast<size_t>(it.first));
870 
871       proc_status_it->second = ProcessTrackingStatus::kAccepted;
872       unwinding_worker_->PostAdoptProcDescriptors(
873           it.first, pid, std::move(maps_fd), std::move(mem_fd));
874       return;  // done
875     }
876   }
877   PERFETTO_DLOG(
878       "Discarding proc-fds for pid [%d] as found no outstanding requests.",
879       static_cast<int>(pid));
880 }
881 
InitiateDescriptorLookup(DataSourceInstanceID ds_id,pid_t pid,uint32_t timeout_ms)882 void PerfProducer::InitiateDescriptorLookup(DataSourceInstanceID ds_id,
883                                             pid_t pid,
884                                             uint32_t timeout_ms) {
885   if (!proc_fd_getter_->RequiresDelayedRequest()) {
886     StartDescriptorLookup(ds_id, pid, timeout_ms);
887     return;
888   }
889 
890   // Delay lookups on Android. See comment on |kProcDescriptorsAndroidDelayMs|.
891   auto weak_this = weak_factory_.GetWeakPtr();
892   task_runner_->PostDelayedTask(
893       [weak_this, ds_id, pid, timeout_ms] {
894         if (weak_this)
895           weak_this->StartDescriptorLookup(ds_id, pid, timeout_ms);
896       },
897       kProcDescriptorsAndroidDelayMs);
898 }
899 
StartDescriptorLookup(DataSourceInstanceID ds_id,pid_t pid,uint32_t timeout_ms)900 void PerfProducer::StartDescriptorLookup(DataSourceInstanceID ds_id,
901                                          pid_t pid,
902                                          uint32_t timeout_ms) {
903   proc_fd_getter_->GetDescriptorsForPid(pid);
904 
905   auto weak_this = weak_factory_.GetWeakPtr();
906   task_runner_->PostDelayedTask(
907       [weak_this, ds_id, pid] {
908         if (weak_this)
909           weak_this->EvaluateDescriptorLookupTimeout(ds_id, pid);
910       },
911       timeout_ms);
912 }
913 
EvaluateDescriptorLookupTimeout(DataSourceInstanceID ds_id,pid_t pid)914 void PerfProducer::EvaluateDescriptorLookupTimeout(DataSourceInstanceID ds_id,
915                                                    pid_t pid) {
916   auto ds_it = data_sources_.find(ds_id);
917   if (ds_it == data_sources_.end())
918     return;
919 
920   DataSourceState& ds = ds_it->second;
921   auto proc_status_it = ds.process_states.find(pid);
922   if (proc_status_it == ds.process_states.end())
923     return;
924 
925   // If the request is still outstanding, mark the process as expired (causing
926   // outstanding and future samples to be discarded).
927   auto proc_status = proc_status_it->second;
928   if (proc_status == ProcessTrackingStatus::kFdsResolving) {
929     PERFETTO_DLOG("Descriptor lookup timeout of pid [%d] for DS [%zu]",
930                   static_cast<int>(pid), static_cast<size_t>(ds_it->first));
931 
932     proc_status_it->second = ProcessTrackingStatus::kFdsTimedOut;
933     // Also inform the unwinder of the state change (so that it can discard any
934     // of the already-enqueued samples).
935     unwinding_worker_->PostRecordTimedOutProcDescriptors(ds_id, pid);
936   }
937 }
938 
PostEmitSample(DataSourceInstanceID ds_id,CompletedSample sample)939 void PerfProducer::PostEmitSample(DataSourceInstanceID ds_id,
940                                   CompletedSample sample) {
941   // hack: c++11 lambdas can't be moved into, so stash the sample on the heap.
942   CompletedSample* raw_sample = new CompletedSample(std::move(sample));
943   auto weak_this = weak_factory_.GetWeakPtr();
944   task_runner_->PostTask([weak_this, ds_id, raw_sample] {
945     if (weak_this)
946       weak_this->EmitSample(ds_id, std::move(*raw_sample));
947     delete raw_sample;
948   });
949 }
950 
EmitSample(DataSourceInstanceID ds_id,CompletedSample sample)951 void PerfProducer::EmitSample(DataSourceInstanceID ds_id,
952                               CompletedSample sample) {
953   auto ds_it = data_sources_.find(ds_id);
954   if (ds_it == data_sources_.end()) {
955     PERFETTO_DLOG("EmitSample(ds: %zu): source gone",
956                   static_cast<size_t>(ds_id));
957     return;
958   }
959   DataSourceState& ds = ds_it->second;
960 
961   // intern callsite
962   GlobalCallstackTrie::Node* callstack_root =
963       callstack_trie_.CreateCallsite(sample.frames, sample.build_ids);
964   uint64_t callstack_iid = callstack_root->id();
965 
966   // start packet, timestamp domain defaults to monotonic_raw
967   auto packet = StartTracePacket(ds.trace_writer.get());
968   packet->set_timestamp(sample.common.timestamp);
969 
970   // write new interning data (if any)
971   protos::pbzero::InternedData* interned_out = packet->set_interned_data();
972   ds.interning_output.WriteCallstack(callstack_root, &callstack_trie_,
973                                      interned_out);
974 
975   // write the sample itself
976   auto* perf_sample = packet->set_perf_sample();
977   perf_sample->set_cpu(sample.common.cpu);
978   perf_sample->set_pid(static_cast<uint32_t>(sample.common.pid));
979   perf_sample->set_tid(static_cast<uint32_t>(sample.common.tid));
980   perf_sample->set_cpu_mode(ToCpuModeEnum(sample.common.cpu_mode));
981   perf_sample->set_timebase_count(sample.common.timebase_count);
982 
983   for (size_t i = 0; i < sample.common.follower_counts.size(); ++i) {
984     perf_sample->add_follower_counts(sample.common.follower_counts[i]);
985   }
986 
987   perf_sample->set_callstack_iid(callstack_iid);
988   if (sample.unwind_error != unwindstack::ERROR_NONE) {
989     perf_sample->set_unwind_error(ToProtoEnum(sample.unwind_error));
990   }
991 }
992 
EmitRingBufferLoss(DataSourceInstanceID ds_id,size_t cpu,uint64_t records_lost)993 void PerfProducer::EmitRingBufferLoss(DataSourceInstanceID ds_id,
994                                       size_t cpu,
995                                       uint64_t records_lost) {
996   auto ds_it = data_sources_.find(ds_id);
997   if (ds_it == data_sources_.end())
998     return;
999   DataSourceState& ds = ds_it->second;
1000   PERFETTO_DLOG("DataSource(%zu): cpu%zu lost [%" PRIu64 "] records",
1001                 static_cast<size_t>(ds_id), cpu, records_lost);
1002 
1003   // The data loss record relates to a single ring buffer, and indicates loss
1004   // since the last successfully-written record in that buffer. Therefore the
1005   // data loss record itself has no timestamp.
1006   // We timestamp the packet with the boot clock for packet ordering purposes,
1007   // but it no longer has a (precise) interpretation relative to the sample
1008   // stream from that per-cpu buffer. See the proto comments for more details.
1009   auto packet = StartTracePacket(ds.trace_writer.get());
1010   packet->set_timestamp(static_cast<uint64_t>(base::GetBootTimeNs().count()));
1011   packet->set_timestamp_clock_id(
1012       protos::pbzero::BuiltinClock::BUILTIN_CLOCK_BOOTTIME);
1013 
1014   auto* perf_sample = packet->set_perf_sample();
1015   perf_sample->set_cpu(static_cast<uint32_t>(cpu));
1016   perf_sample->set_kernel_records_lost(records_lost);
1017 }
1018 
PostEmitUnwinderSkippedSample(DataSourceInstanceID ds_id,ParsedSample sample)1019 void PerfProducer::PostEmitUnwinderSkippedSample(DataSourceInstanceID ds_id,
1020                                                  ParsedSample sample) {
1021   PostEmitSkippedSample(ds_id, std::move(sample),
1022                         SampleSkipReason::kUnwindStage);
1023 }
1024 
PostEmitSkippedSample(DataSourceInstanceID ds_id,ParsedSample sample,SampleSkipReason reason)1025 void PerfProducer::PostEmitSkippedSample(DataSourceInstanceID ds_id,
1026                                          ParsedSample sample,
1027                                          SampleSkipReason reason) {
1028   // hack: c++11 lambdas can't be moved into, so stash the sample on the heap.
1029   ParsedSample* raw_sample = new ParsedSample(std::move(sample));
1030   auto weak_this = weak_factory_.GetWeakPtr();
1031   task_runner_->PostTask([weak_this, ds_id, raw_sample, reason] {
1032     if (weak_this)
1033       weak_this->EmitSkippedSample(ds_id, std::move(*raw_sample), reason);
1034     delete raw_sample;
1035   });
1036 }
1037 
EmitSkippedSample(DataSourceInstanceID ds_id,ParsedSample sample,SampleSkipReason reason)1038 void PerfProducer::EmitSkippedSample(DataSourceInstanceID ds_id,
1039                                      ParsedSample sample,
1040                                      SampleSkipReason reason) {
1041   auto ds_it = data_sources_.find(ds_id);
1042   if (ds_it == data_sources_.end())
1043     return;
1044   DataSourceState& ds = ds_it->second;
1045 
1046   // Note: timestamp defaults to the monotonic_raw domain.
1047   auto packet = StartTracePacket(ds.trace_writer.get());
1048   packet->set_timestamp(sample.common.timestamp);
1049   auto* perf_sample = packet->set_perf_sample();
1050   perf_sample->set_cpu(sample.common.cpu);
1051   perf_sample->set_pid(static_cast<uint32_t>(sample.common.pid));
1052   perf_sample->set_tid(static_cast<uint32_t>(sample.common.tid));
1053   perf_sample->set_cpu_mode(ToCpuModeEnum(sample.common.cpu_mode));
1054   perf_sample->set_timebase_count(sample.common.timebase_count);
1055 
1056   for (size_t i = 0; i < sample.common.follower_counts.size(); ++i) {
1057     perf_sample->add_follower_counts(sample.common.follower_counts[i]);
1058   }
1059 
1060   using PerfSample = protos::pbzero::PerfSample;
1061   switch (reason) {
1062     case SampleSkipReason::kReadStage:
1063       perf_sample->set_sample_skipped_reason(
1064           PerfSample::PROFILER_SKIP_READ_STAGE);
1065       break;
1066     case SampleSkipReason::kUnwindEnqueue:
1067       perf_sample->set_sample_skipped_reason(
1068           PerfSample::PROFILER_SKIP_UNWIND_ENQUEUE);
1069       break;
1070     case SampleSkipReason::kUnwindStage:
1071       perf_sample->set_sample_skipped_reason(
1072           PerfSample::PROFILER_SKIP_UNWIND_STAGE);
1073       break;
1074   }
1075 }
1076 
InitiateReaderStop(DataSourceState * ds)1077 void PerfProducer::InitiateReaderStop(DataSourceState* ds) {
1078   PERFETTO_DLOG("InitiateReaderStop");
1079   PERFETTO_CHECK(ds->status != DataSourceState::Status::kShuttingDown);
1080 
1081   ds->status = DataSourceState::Status::kShuttingDown;
1082   for (auto& event_reader : ds->per_cpu_readers) {
1083     event_reader.DisableEvents();
1084   }
1085 }
1086 
PostFinishDataSourceStop(DataSourceInstanceID ds_id)1087 void PerfProducer::PostFinishDataSourceStop(DataSourceInstanceID ds_id) {
1088   auto weak_producer = weak_factory_.GetWeakPtr();
1089   task_runner_->PostTask([weak_producer, ds_id] {
1090     if (weak_producer)
1091       weak_producer->FinishDataSourceStop(ds_id);
1092   });
1093 }
1094 
FinishDataSourceStop(DataSourceInstanceID ds_id)1095 void PerfProducer::FinishDataSourceStop(DataSourceInstanceID ds_id) {
1096   PERFETTO_LOG("FinishDataSourceStop(%zu)", static_cast<size_t>(ds_id));
1097   auto ds_it = data_sources_.find(ds_id);
1098   if (ds_it == data_sources_.end()) {
1099     PERFETTO_DLOG("FinishDataSourceStop(%zu): source gone",
1100                   static_cast<size_t>(ds_id));
1101     return;
1102   }
1103   DataSourceState& ds = ds_it->second;
1104   PERFETTO_CHECK(ds.status == DataSourceState::Status::kShuttingDown);
1105 
1106   ds.trace_writer->Flush();
1107   data_sources_.erase(ds_it);
1108 
1109   endpoint_->NotifyDataSourceStopped(ds_id);
1110 
1111   // Clean up resources if there are no more active sources.
1112   if (data_sources_.empty()) {
1113     callstack_trie_.ClearTrie();  // purge internings
1114     base::MaybeReleaseAllocatorMemToOS();
1115   }
1116 }
1117 
1118 // TODO(rsavitski): maybe make the tracing service respect premature
1119 // producer-driven stops, and then issue a NotifyDataSourceStopped here.
1120 // Alternatively (and at the expense of higher complexity) introduce a new data
1121 // source status of "tombstoned", and propagate it until the source is stopped
1122 // by the service (this would technically allow for stricter lifetime checking
1123 // of data sources, and help with discarding periodic flushes).
1124 // TODO(rsavitski): Purging while stopping will currently leave the stop
1125 // unacknowledged. Consider checking whether the DS is stopping here, and if so,
1126 // notifying immediately after erasing.
PurgeDataSource(DataSourceInstanceID ds_id)1127 void PerfProducer::PurgeDataSource(DataSourceInstanceID ds_id) {
1128   auto ds_it = data_sources_.find(ds_id);
1129   if (ds_it == data_sources_.end())
1130     return;
1131   DataSourceState& ds = ds_it->second;
1132 
1133   PERFETTO_LOG("Stopping DataSource(%zu) prematurely",
1134                static_cast<size_t>(ds_id));
1135 
1136   unwinding_worker_->PostPurgeDataSource(ds_id);
1137 
1138   // Write a packet indicating the abrupt stop.
1139   {
1140     auto packet = StartTracePacket(ds.trace_writer.get());
1141     packet->set_timestamp(static_cast<uint64_t>(base::GetBootTimeNs().count()));
1142     packet->set_timestamp_clock_id(
1143         protos::pbzero::BuiltinClock::BUILTIN_CLOCK_BOOTTIME);
1144     auto* perf_sample = packet->set_perf_sample();
1145     auto* producer_event = perf_sample->set_producer_event();
1146     producer_event->set_source_stop_reason(
1147         protos::pbzero::PerfSample::ProducerEvent::PROFILER_STOP_GUARDRAIL);
1148   }
1149 
1150   ds.trace_writer->Flush();
1151   data_sources_.erase(ds_it);
1152 
1153   // Clean up resources if there are no more active sources.
1154   if (data_sources_.empty()) {
1155     callstack_trie_.ClearTrie();  // purge internings
1156     base::MaybeReleaseAllocatorMemToOS();
1157   }
1158 }
1159 
1160 // Either:
1161 // * choose a random number up to |shard_count|.
1162 // * reuse a choice made previously by a data source within this tracing
1163 //   session. The config option requires that all data sources within one config
1164 //   have the same shard count.
GetOrChooseCallstackProcessShard(uint64_t tracing_session_id,uint32_t shard_count)1165 std::optional<ProcessSharding> PerfProducer::GetOrChooseCallstackProcessShard(
1166     uint64_t tracing_session_id,
1167     uint32_t shard_count) {
1168   for (auto& it : data_sources_) {
1169     const DataSourceState& ds = it.second;
1170     const auto& sharding = ds.event_config.filter().process_sharding;
1171     if ((ds.tracing_session_id != tracing_session_id) || !sharding.has_value())
1172       continue;
1173 
1174     // Found existing data source, reuse its decision while doing best-effort
1175     // error reporting (logging) if the shard count is not the same.
1176     if (sharding->shard_count != shard_count) {
1177       PERFETTO_ELOG(
1178           "Mismatch of process_shard_count between data sources in tracing "
1179           "session %" PRIu64 ". Overriding shard count to match.",
1180           tracing_session_id);
1181     }
1182     return sharding;
1183   }
1184 
1185   // First data source in this session, choose random shard.
1186   std::random_device r;
1187   std::minstd_rand minstd(r());
1188   std::uniform_int_distribution<uint32_t> dist(0, shard_count - 1);
1189   uint32_t chosen_shard = dist(minstd);
1190 
1191   ProcessSharding ret;
1192   ret.shard_count = shard_count;
1193   ret.chosen_shard = chosen_shard;
1194 
1195   PERFETTO_DCHECK(ret.shard_count && ret.chosen_shard < ret.shard_count);
1196   return ret;
1197 }
1198 
StartMetatraceSource(DataSourceInstanceID ds_id,BufferID target_buffer)1199 void PerfProducer::StartMetatraceSource(DataSourceInstanceID ds_id,
1200                                         BufferID target_buffer) {
1201   auto writer = endpoint_->CreateTraceWriter(target_buffer);
1202 
1203   auto it_and_inserted = metatrace_writers_.emplace(
1204       std::piecewise_construct, std::make_tuple(ds_id), std::make_tuple());
1205   PERFETTO_DCHECK(it_and_inserted.second);
1206   // Note: only the first concurrent writer will actually be active.
1207   metatrace_writers_[ds_id].Enable(task_runner_, std::move(writer),
1208                                    metatrace::TAG_ANY);
1209 }
1210 
ConnectWithRetries(const char * socket_name)1211 void PerfProducer::ConnectWithRetries(const char* socket_name) {
1212   PERFETTO_DCHECK(state_ == kNotStarted);
1213   state_ = kNotConnected;
1214 
1215   ResetConnectionBackoff();
1216   producer_socket_name_ = socket_name;
1217   ConnectService();
1218 }
1219 
ConnectService()1220 void PerfProducer::ConnectService() {
1221   PERFETTO_DCHECK(state_ == kNotConnected);
1222   state_ = kConnecting;
1223   endpoint_ = ProducerIPCClient::Connect(
1224       producer_socket_name_, this, kProducerName, task_runner_,
1225       TracingService::ProducerSMBScrapingMode::kEnabled);
1226 }
1227 
IncreaseConnectionBackoff()1228 void PerfProducer::IncreaseConnectionBackoff() {
1229   connection_backoff_ms_ *= 2;
1230   if (connection_backoff_ms_ > kMaxConnectionBackoffMs)
1231     connection_backoff_ms_ = kMaxConnectionBackoffMs;
1232 }
1233 
ResetConnectionBackoff()1234 void PerfProducer::ResetConnectionBackoff() {
1235   connection_backoff_ms_ = kInitialConnectionBackoffMs;
1236 }
1237 
OnConnect()1238 void PerfProducer::OnConnect() {
1239   PERFETTO_DCHECK(state_ == kConnecting);
1240   state_ = kConnected;
1241   ResetConnectionBackoff();
1242   PERFETTO_LOG("Connected to the service");
1243 
1244   {
1245     // linux.perf
1246     DataSourceDescriptor desc;
1247     desc.set_name(kDataSourceName);
1248     desc.set_handles_incremental_state_clear(true);
1249     desc.set_will_notify_on_stop(true);
1250     endpoint_->RegisterDataSource(desc);
1251   }
1252   {
1253     // metatrace
1254     DataSourceDescriptor desc;
1255     desc.set_name(MetatraceWriter::kDataSourceName);
1256     endpoint_->RegisterDataSource(desc);
1257   }
1258   // Used by tracebox to synchronize with traced_probes being registered.
1259   if (all_data_sources_registered_cb_) {
1260     endpoint_->Sync(all_data_sources_registered_cb_);
1261   }
1262 }
1263 
OnDisconnect()1264 void PerfProducer::OnDisconnect() {
1265   PERFETTO_DCHECK(state_ == kConnected || state_ == kConnecting);
1266   PERFETTO_LOG("Disconnected from tracing service");
1267 
1268   auto weak_producer = weak_factory_.GetWeakPtr();
1269   if (state_ == kConnected)
1270     return task_runner_->PostTask([weak_producer] {
1271       if (weak_producer)
1272         weak_producer->Restart();
1273     });
1274 
1275   state_ = kNotConnected;
1276   IncreaseConnectionBackoff();
1277   task_runner_->PostDelayedTask(
1278       [weak_producer] {
1279         if (weak_producer)
1280           weak_producer->ConnectService();
1281       },
1282       connection_backoff_ms_);
1283 }
1284 
Restart()1285 void PerfProducer::Restart() {
1286   // We lost the connection with the tracing service. At this point we need
1287   // to reset all the data sources. Trying to handle that manually is going to
1288   // be error prone. What we do here is simply destroy the instance and
1289   // recreate it again.
1290   base::TaskRunner* task_runner = task_runner_;
1291   const char* socket_name = producer_socket_name_;
1292   ProcDescriptorGetter* proc_fd_getter = proc_fd_getter_;
1293 
1294   // Invoke destructor and then the constructor again.
1295   this->~PerfProducer();
1296   new (this) PerfProducer(proc_fd_getter, task_runner);
1297 
1298   ConnectWithRetries(socket_name);
1299 }
1300 
1301 }  // namespace profiling
1302 }  // namespace perfetto
1303