1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8
9 #include <assert.h>
10 #include <stdbool.h>
11 #include <stddef.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <math.h>
15
16 #include <fp16.h>
17
18 #include <xnnpack.h>
19 #include <xnnpack/allocator.h>
20 #include <xnnpack/log.h>
21 #include <xnnpack/math.h>
22 #include <xnnpack/operator.h>
23 #include <xnnpack/pack.h>
24 #include <xnnpack/params.h>
25
26
create_fully_connected_nc(size_t input_channels,size_t output_channels,size_t input_stride,size_t output_stride,const void * kernel,const void * bias,uint32_t flags,uint32_t log2_filter_element_size,uint32_t bias_element_size,xnn_pack_gemm_io_w_function pack_gemm_io_w,xnn_pack_gemm_goi_w_function pack_gemm_goi_w,const void * packing_params,int packed_weights_padding_byte,const void * params,size_t params_size,const struct gemm_parameters * gemm_parameters,const struct gemm_fused_ukernels * gemm_ukernels,uint32_t datatype_init_flags,enum xnn_operator_type operator_type,xnn_caches_t caches,xnn_operator_t * fully_connected_op_out)27 static enum xnn_status create_fully_connected_nc(
28 size_t input_channels,
29 size_t output_channels,
30 size_t input_stride,
31 size_t output_stride,
32 const void* kernel,
33 const void* bias,
34 uint32_t flags,
35 uint32_t log2_filter_element_size,
36 uint32_t bias_element_size,
37 xnn_pack_gemm_io_w_function pack_gemm_io_w,
38 xnn_pack_gemm_goi_w_function pack_gemm_goi_w,
39 const void* packing_params,
40 int packed_weights_padding_byte,
41 const void* params,
42 size_t params_size,
43 const struct gemm_parameters* gemm_parameters,
44 const struct gemm_fused_ukernels* gemm_ukernels,
45 uint32_t datatype_init_flags,
46 enum xnn_operator_type operator_type,
47 xnn_caches_t caches,
48 xnn_operator_t* fully_connected_op_out)
49 {
50 xnn_operator_t fully_connected_op = NULL;
51 enum xnn_status status = xnn_status_uninitialized;
52
53 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
54 xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
55 xnn_operator_type_to_string(operator_type));
56 goto error;
57 }
58
59 status = xnn_status_unsupported_hardware;
60
61 if ((xnn_params.init_flags & datatype_init_flags) != datatype_init_flags) {
62 xnn_log_error(
63 "failed to create %s operator: operations on data type are not supported",
64 xnn_operator_type_to_string(operator_type));
65 goto error;
66 }
67
68 status = xnn_status_invalid_parameter;
69
70 if (input_channels == 0) {
71 xnn_log_error(
72 "failed to create %s operator with %zu input channels: number of channels must be non-zero",
73 xnn_operator_type_to_string(operator_type), input_channels);
74 goto error;
75 }
76
77 if (output_channels == 0) {
78 xnn_log_error(
79 "failed to create %s operator with %zu output channels: number of channels must be non-zero",
80 xnn_operator_type_to_string(operator_type), output_channels);
81 goto error;
82 }
83
84 if (input_stride < input_channels) {
85 xnn_log_error(
86 "failed to create %s operator with input element stride of %zu: "
87 "stride must be at least as large as the number of input channels (%zu)",
88 xnn_operator_type_to_string(operator_type), input_stride, input_channels);
89 goto error;
90 }
91
92 if (output_stride < output_channels) {
93 xnn_log_error(
94 "failed to create %s operator with output element stride of %zu: "
95 "stride must be at least as large as the number of output channels (%zu)",
96 xnn_operator_type_to_string(operator_type), output_stride, output_channels);
97 goto error;
98 }
99
100 status = xnn_status_out_of_memory;
101
102 fully_connected_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
103 if (fully_connected_op == NULL) {
104 xnn_log_error(
105 "failed to allocate %zu bytes for %s operator descriptor",
106 sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type));
107 goto error;
108 }
109
110 if (caches != NULL) {
111 fully_connected_op->weights_cache = caches->weights_cache;
112 }
113
114 const uint32_t nr = gemm_parameters->nr;
115 const uint32_t kr = UINT32_C(1) << gemm_parameters->log2_kr;
116 const uint32_t sr = UINT32_C(1) << gemm_parameters->log2_sr;
117
118 const size_t n_stride = round_up(output_channels, nr);
119 const size_t k_stride = round_up_po2(input_channels, kr * sr);
120
121 const size_t packed_weights_size = n_stride * (bias_element_size + (k_stride << log2_filter_element_size));
122 size_t aligned_total_weights_size = round_up_po2(packed_weights_size, XNN_ALLOCATION_ALIGNMENT);
123 void* weights_ptr = xnn_get_pointer_to_write_weights(
124 fully_connected_op, aligned_total_weights_size, packed_weights_padding_byte);
125 if (weights_ptr == NULL) {
126 xnn_log_error(
127 "failed to allocate %zu bytes for %s operator packed weights",
128 packed_weights_size, xnn_operator_type_to_string(operator_type));
129 goto error;
130 }
131
132 if (flags & XNN_FLAG_TRANSPOSE_WEIGHTS) {
133 pack_gemm_io_w(
134 output_channels, input_channels,
135 nr, kr, sr,
136 kernel, bias,
137 weights_ptr,
138 packing_params);
139 } else {
140 pack_gemm_goi_w(
141 1, output_channels, input_channels,
142 nr, kr, sr,
143 kernel, bias,
144 weights_ptr,
145 0 /* extra bytes */,
146 packing_params);
147 }
148
149 if (use_weights_cache(fully_connected_op)) {
150 fully_connected_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
151 fully_connected_op->weights_cache, weights_ptr, aligned_total_weights_size);
152 }
153
154 fully_connected_op->group_input_channels = input_channels;
155 fully_connected_op->group_output_channels = output_channels;
156 fully_connected_op->input_pixel_stride = input_stride;
157 fully_connected_op->output_pixel_stride = output_stride;
158
159 memcpy(&fully_connected_op->params, params, params_size);
160 fully_connected_op->type = operator_type;
161 fully_connected_op->flags = flags;
162
163 const size_t mr = gemm_parameters->mr;
164 fully_connected_op->ukernel.type = xnn_ukernel_type_gemm;
165 fully_connected_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
166 .mr = mr,
167 .nr = nr,
168 .kr = kr,
169 .sr = sr,
170 };
171
172 assert(XNN_MAX_MR >= mr);
173 fully_connected_op->ukernel.gemm.gemm_cases[0] = gemm_ukernels->gemm[0];
174 for (size_t i = 1; i < mr; i++) {
175 fully_connected_op->ukernel.gemm.gemm_cases[i] = gemm_ukernels->gemm[mr-1];
176 }
177
178 fully_connected_op->state = xnn_run_state_invalid;
179
180 *fully_connected_op_out = fully_connected_op;
181 return xnn_status_success;
182
183 error:
184 xnn_delete_operator(fully_connected_op);
185 return status;
186 }
187
setup_fully_connected_nc(xnn_operator_t fully_connected_op,enum xnn_operator_type expected_operator_type,size_t batch_size,const void * input,void * output,uint32_t datatype_init_flags,uint32_t log2_input_element_size,uint32_t log2_filter_element_size,uint32_t bias_element_size,uint32_t log2_output_element_size,const void * params,size_t params_size,size_t num_threads)188 static enum xnn_status setup_fully_connected_nc(
189 xnn_operator_t fully_connected_op,
190 enum xnn_operator_type expected_operator_type,
191 size_t batch_size,
192 const void* input,
193 void* output,
194 uint32_t datatype_init_flags,
195 uint32_t log2_input_element_size,
196 uint32_t log2_filter_element_size,
197 uint32_t bias_element_size,
198 uint32_t log2_output_element_size,
199 const void* params,
200 size_t params_size,
201 size_t num_threads)
202 {
203 if (fully_connected_op->type != expected_operator_type) {
204 xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
205 xnn_operator_type_to_string(expected_operator_type),
206 xnn_operator_type_to_string(fully_connected_op->type));
207 return xnn_status_invalid_parameter;
208 }
209 fully_connected_op->state = xnn_run_state_invalid;
210
211 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
212 xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
213 xnn_operator_type_to_string(fully_connected_op->type));
214 return xnn_status_uninitialized;
215 }
216
217 if (batch_size == 0) {
218 fully_connected_op->state = xnn_run_state_skip;
219 return xnn_status_success;
220 }
221
222 if (fully_connected_op->weights_cache != NULL &&
223 !xnn_weights_cache_is_finalized(fully_connected_op->weights_cache)) {
224 xnn_log_error("failed to setup %s operator: weights cache is not finalized",
225 xnn_operator_type_to_string(fully_connected_op->type));
226 return xnn_status_invalid_state;
227 }
228
229 fully_connected_op->batch_size = 1;
230 fully_connected_op->input_height = batch_size;
231 fully_connected_op->input_width = 1;
232 fully_connected_op->input = input;
233
234 fully_connected_op->output_height = batch_size;
235 fully_connected_op->output_width = 1;
236 fully_connected_op->output = output;
237
238 const size_t input_channels = fully_connected_op->group_input_channels;
239 const size_t output_channels = fully_connected_op->group_output_channels;
240
241 uint32_t mr = fully_connected_op->ukernel.gemm.mr;
242 const uint32_t nr = fully_connected_op->ukernel.gemm.nr;
243
244 struct xnn_hmp_gemm_ukernel gemm_ukernel = fully_connected_op->ukernel.gemm.gemm_cases[mr-1];
245 if (batch_size == 1 && fully_connected_op->ukernel.gemm.gemm_cases[0].function[XNN_UARCH_DEFAULT] != NULL) {
246 gemm_ukernel = fully_connected_op->ukernel.gemm.gemm_cases[0];
247 mr = 1;
248 }
249
250 fully_connected_op->context.gemm = (struct gemm_context) {
251 .k_scaled = input_channels << log2_input_element_size,
252 .w_stride = bias_element_size +
253 (round_up_po2(input_channels, fully_connected_op->ukernel.gemm.kr * fully_connected_op->ukernel.gemm.sr) << log2_input_element_size),
254 .a = input,
255 .a_stride = fully_connected_op->input_pixel_stride << log2_input_element_size,
256 .packed_w = packed_weights(fully_connected_op),
257 .c = output,
258 .cm_stride = fully_connected_op->output_pixel_stride << log2_output_element_size,
259 .cn_stride = nr << log2_output_element_size,
260 .log2_csize = log2_output_element_size,
261 .ukernel = gemm_ukernel,
262 };
263 memcpy(&fully_connected_op->context.gemm.params, params, params_size);
264 fully_connected_op->context.gemm.fused_params = &fully_connected_op->context.gemm.params;
265
266 #if XNN_TEST_MODE
267 const size_t nc = nr;
268 #else
269 size_t nc = output_channels;
270 if (num_threads > 1) {
271 const size_t num_other_tiles = divide_round_up(batch_size, mr);
272 const size_t target_tiles_per_thread = 5;
273 const size_t max_nc = divide_round_up(output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
274 if (max_nc < nc) {
275 nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
276 }
277 }
278 #endif
279 #if XNN_MAX_UARCH_TYPES > 1
280 if (xnn_is_hmp_gemm_ukernel(gemm_ukernel)) {
281 fully_connected_op->compute.type = xnn_parallelization_type_2d_tile_2d_with_uarch;
282 fully_connected_op->compute.task_2d_tile_2d_with_id = (pthreadpool_task_2d_tile_2d_with_id_t) xnn_compute_hmp_gemm;
283 } else {
284 fully_connected_op->compute.type = xnn_parallelization_type_2d_tile_2d;
285 fully_connected_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
286 }
287 #else
288 fully_connected_op->compute.type = xnn_parallelization_type_2d_tile_2d;
289 fully_connected_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
290 #endif
291 fully_connected_op->compute.range[0] = batch_size;
292 fully_connected_op->compute.range[1] = output_channels;
293 fully_connected_op->compute.tile[0] = mr;
294 fully_connected_op->compute.tile[1] = nc;
295 fully_connected_op->state = xnn_run_state_ready;
296
297 return xnn_status_success;
298 }
299
xnn_create_fully_connected_nc_f16(size_t input_channels,size_t output_channels,size_t input_stride,size_t output_stride,const void * kernel,const void * bias,float output_min,float output_max,uint32_t flags,xnn_caches_t caches,xnn_operator_t * fully_connected_op_out)300 enum xnn_status xnn_create_fully_connected_nc_f16(
301 size_t input_channels,
302 size_t output_channels,
303 size_t input_stride,
304 size_t output_stride,
305 const void* kernel,
306 const void* bias,
307 float output_min,
308 float output_max,
309 uint32_t flags,
310 xnn_caches_t caches,
311 xnn_operator_t* fully_connected_op_out)
312 {
313 if (isnan(output_min)) {
314 xnn_log_error(
315 "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
316 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f16));
317 return xnn_status_invalid_parameter;
318 }
319
320 if (isnan(output_max)) {
321 xnn_log_error(
322 "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
323 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f16));
324 return xnn_status_invalid_parameter;
325 }
326
327 const uint16_t fp16_output_min = fp16_ieee_from_fp32_value(output_min);
328 const uint16_t fp16_output_max = fp16_ieee_from_fp32_value(output_max);
329 const float rounded_output_min = fp16_ieee_to_fp32_value(fp16_output_min);
330 const float rounded_output_max = fp16_ieee_to_fp32_value(fp16_output_max);
331 if (rounded_output_min >= rounded_output_max) {
332 xnn_log_error(
333 "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
334 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f16), rounded_output_min, rounded_output_max);
335 return xnn_status_invalid_parameter;
336 }
337
338 union xnn_f16_minmax_params params;
339 if XNN_LIKELY(xnn_params.f16.gemm.init.f16 != NULL) {
340 xnn_params.f16.gemm.init.f16(¶ms, fp16_output_min, fp16_output_max);
341 }
342 xnn_pack_gemm_io_w_function pack_gemm_io_w = (xnn_pack_gemm_io_w_function) xnn_pack_f16_gemm_io_w;
343 xnn_pack_gemm_goi_w_function pack_gemm_goi_w = (xnn_pack_gemm_goi_w_function) xnn_pack_f16_gemm_goi_w;
344 if (flags & XNN_FLAG_FP32_STATIC_WEIGHTS) {
345 pack_gemm_io_w = (xnn_pack_gemm_io_w_function) xnn_pack_f32_to_f16_gemm_io_w;
346 pack_gemm_goi_w = (xnn_pack_gemm_goi_w_function) xnn_pack_f32_to_f16_gemm_goi_w;
347 }
348 return create_fully_connected_nc(
349 input_channels, output_channels,
350 input_stride, output_stride,
351 kernel, bias, flags,
352 1 /* log2(sizeof(filter element)) = log2(sizeof(uint16_t)) */,
353 sizeof(uint16_t) /* sizeof(bias element) */,
354 pack_gemm_io_w,
355 pack_gemm_goi_w,
356 NULL /* packing params */, 0 /* packed weights padding byte */,
357 ¶ms, sizeof(params),
358 &xnn_params.f16.gemm, &xnn_params.f16.gemm.minmax,
359 XNN_INIT_FLAG_F16,
360 xnn_operator_type_fully_connected_nc_f16,
361 caches,
362 fully_connected_op_out);
363 }
364
xnn_create_fully_connected_nc_f32(size_t input_channels,size_t output_channels,size_t input_stride,size_t output_stride,const float * kernel,const float * bias,float output_min,float output_max,uint32_t flags,xnn_caches_t caches,xnn_operator_t * fully_connected_op_out)365 enum xnn_status xnn_create_fully_connected_nc_f32(
366 size_t input_channels,
367 size_t output_channels,
368 size_t input_stride,
369 size_t output_stride,
370 const float* kernel,
371 const float* bias,
372 float output_min,
373 float output_max,
374 uint32_t flags,
375 xnn_caches_t caches,
376 xnn_operator_t* fully_connected_op_out)
377 {
378 if (isnan(output_min)) {
379 xnn_log_error(
380 "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
381 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f32));
382 return xnn_status_invalid_parameter;
383 }
384
385 if (isnan(output_max)) {
386 xnn_log_error(
387 "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
388 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f32));
389 return xnn_status_invalid_parameter;
390 }
391
392 if (output_min >= output_max) {
393 xnn_log_error(
394 "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
395 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_f32), output_min, output_max);
396 return xnn_status_invalid_parameter;
397 }
398
399 const struct gemm_fused_ukernels* gemm_ukernels = &xnn_params.f32.gemm.minmax;
400 const bool linear_activation = (output_max == INFINITY) && (output_min == -output_max);
401 if (linear_activation && xnn_params.f32.gemm.linear.gemm[xnn_params.f32.gemm.mr-1].function[XNN_UARCH_DEFAULT] != NULL) {
402 gemm_ukernels = &xnn_params.f32.gemm.linear;
403 }
404
405 union xnn_f32_minmax_params params;
406 if XNN_LIKELY(xnn_params.f32.gemm.init.f32 != NULL) {
407 xnn_params.f32.gemm.init.f32(¶ms, output_min, output_max);
408 }
409 return create_fully_connected_nc(
410 input_channels, output_channels,
411 input_stride, output_stride,
412 kernel, bias, flags,
413 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
414 sizeof(float) /* sizeof(bias element) */,
415 (xnn_pack_gemm_io_w_function) xnn_pack_f32_gemm_io_w,
416 (xnn_pack_gemm_goi_w_function) xnn_pack_f32_gemm_goi_w,
417 NULL /* packing params */, 0 /* packed weights padding byte */,
418 ¶ms, sizeof(params),
419 &xnn_params.f32.gemm, gemm_ukernels,
420 XNN_INIT_FLAG_F32,
421 xnn_operator_type_fully_connected_nc_f32,
422 caches,
423 fully_connected_op_out);
424 }
425
xnn_create_fully_connected_nc_qs8(size_t input_channels,size_t output_channels,size_t input_stride,size_t output_stride,int8_t input_zero_point,float input_scale,float kernel_scale,const int8_t * kernel,const int32_t * bias,int8_t output_zero_point,float output_scale,int8_t output_min,int8_t output_max,uint32_t flags,xnn_caches_t caches,xnn_operator_t * fully_connected_op_out)426 enum xnn_status xnn_create_fully_connected_nc_qs8(
427 size_t input_channels,
428 size_t output_channels,
429 size_t input_stride,
430 size_t output_stride,
431 int8_t input_zero_point,
432 float input_scale,
433 float kernel_scale,
434 const int8_t* kernel,
435 const int32_t* bias,
436 int8_t output_zero_point,
437 float output_scale,
438 int8_t output_min,
439 int8_t output_max,
440 uint32_t flags,
441 xnn_caches_t caches,
442 xnn_operator_t* fully_connected_op_out)
443 {
444 if (input_scale <= 0.0f || !isnormal(input_scale)) {
445 xnn_log_error(
446 "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive",
447 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qs8), input_scale);
448 return xnn_status_invalid_parameter;
449 }
450
451 if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
452 xnn_log_error(
453 "failed to create %s operator with %.7g kernel scale: scale must be finite, normalized, and positive",
454 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qs8), kernel_scale);
455 return xnn_status_invalid_parameter;
456 }
457
458 if (output_scale <= 0.0f || !isnormal(output_scale)) {
459 xnn_log_error(
460 "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive",
461 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qs8), output_scale);
462 return xnn_status_invalid_parameter;
463 }
464
465 if (output_min >= output_max) {
466 xnn_log_error(
467 "failed to create %s operator with [%" PRId8 ", %" PRId8 "] output range: range min must be below range max",
468 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qs8), output_min, output_max);
469 return xnn_status_invalid_parameter;
470 }
471
472 const float requantization_scale = input_scale * kernel_scale / output_scale;
473 if (requantization_scale >= 256.0f) {
474 xnn_log_error(
475 "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
476 "requantization scale %.7g is greater or equal to 256.0",
477 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qs8),
478 input_scale, kernel_scale, output_scale, requantization_scale);
479 return xnn_status_unsupported_parameter;
480 }
481
482 union xnn_qs8_conv_minmax_params params;
483 if XNN_LIKELY(xnn_params.qs8.gemm.init.qs8 != NULL) {
484 xnn_params.qs8.gemm.init.qs8(¶ms, requantization_scale, output_zero_point, output_min, output_max);
485 }
486 const struct xnn_qs8_packing_params packing_params = {
487 .input_zero_point = input_zero_point,
488 };
489 return create_fully_connected_nc(
490 input_channels, output_channels,
491 input_stride, output_stride,
492 kernel, bias, flags,
493 0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
494 sizeof(int32_t) /* sizeof(bias element) */,
495 (xnn_pack_gemm_io_w_function) xnn_pack_qs8_gemm_io_w,
496 (xnn_pack_gemm_goi_w_function) xnn_pack_qs8_gemm_goi_w,
497 &packing_params, 0 /* packed weights padding byte */,
498 ¶ms, sizeof(params),
499 &xnn_params.qs8.gemm, &xnn_params.qs8.gemm.minmax,
500 XNN_INIT_FLAG_QS8,
501 xnn_operator_type_fully_connected_nc_qs8,
502 caches,
503 fully_connected_op_out);
504 }
505
xnn_create_fully_connected_nc_qu8(size_t input_channels,size_t output_channels,size_t input_stride,size_t output_stride,uint8_t input_zero_point,float input_scale,uint8_t kernel_zero_point,float kernel_scale,const uint8_t * kernel,const int32_t * bias,uint8_t output_zero_point,float output_scale,uint8_t output_min,uint8_t output_max,uint32_t flags,xnn_caches_t caches,xnn_operator_t * fully_connected_op_out)506 enum xnn_status xnn_create_fully_connected_nc_qu8(
507 size_t input_channels,
508 size_t output_channels,
509 size_t input_stride,
510 size_t output_stride,
511 uint8_t input_zero_point,
512 float input_scale,
513 uint8_t kernel_zero_point,
514 float kernel_scale,
515 const uint8_t* kernel,
516 const int32_t* bias,
517 uint8_t output_zero_point,
518 float output_scale,
519 uint8_t output_min,
520 uint8_t output_max,
521 uint32_t flags,
522 xnn_caches_t caches,
523 xnn_operator_t* fully_connected_op_out)
524 {
525 if (input_scale <= 0.0f || !isnormal(input_scale)) {
526 xnn_log_error(
527 "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive",
528 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qu8), input_scale);
529 return xnn_status_invalid_parameter;
530 }
531
532 if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
533 xnn_log_error(
534 "failed to create %s operator with %.7g kernel scale: scale must be finite, normalized, and positive",
535 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qu8), kernel_scale);
536 return xnn_status_invalid_parameter;
537 }
538
539 if (output_scale <= 0.0f || !isnormal(output_scale)) {
540 xnn_log_error(
541 "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive",
542 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qu8), output_scale);
543 return xnn_status_invalid_parameter;
544 }
545
546 if (output_min >= output_max) {
547 xnn_log_error(
548 "failed to create %s operator with [%" PRIu8 ", %" PRIu8 "] output range: range min must be below range max",
549 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qu8), output_min, output_max);
550 return xnn_status_invalid_parameter;
551 }
552
553 const float requantization_scale = input_scale * kernel_scale / output_scale;
554 if (requantization_scale >= 256.0f) {
555 xnn_log_error(
556 "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
557 "requantization scale %.7g is greater or equal to 256.0",
558 xnn_operator_type_to_string(xnn_operator_type_fully_connected_nc_qu8),
559 input_scale, kernel_scale, output_scale, requantization_scale);
560 return xnn_status_unsupported_parameter;
561 }
562
563 union xnn_qu8_conv_minmax_params params;
564 if XNN_LIKELY(xnn_params.qu8.gemm.init.qu8 != NULL) {
565 xnn_params.qu8.gemm.init.qu8(¶ms,
566 kernel_zero_point, requantization_scale, output_zero_point, output_min, output_max);
567 }
568 const struct xnn_qu8_packing_params packing_params = {
569 .input_zero_point = input_zero_point,
570 .kernel_zero_point = kernel_zero_point,
571 };
572 return create_fully_connected_nc(
573 input_channels, output_channels,
574 input_stride, output_stride,
575 kernel, bias, flags,
576 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
577 sizeof(int32_t) /* sizeof(bias element) */,
578 (xnn_pack_gemm_io_w_function) xnn_pack_qu8_gemm_io_w,
579 (xnn_pack_gemm_goi_w_function) xnn_pack_qu8_gemm_goi_w,
580 &packing_params, kernel_zero_point /* packed weights padding byte */,
581 ¶ms, sizeof(params),
582 &xnn_params.qu8.gemm, &xnn_params.qu8.gemm.minmax,
583 XNN_INIT_FLAG_QU8,
584 xnn_operator_type_fully_connected_nc_qu8,
585 caches,
586 fully_connected_op_out);
587 }
588
xnn_setup_fully_connected_nc_f16(xnn_operator_t fully_connected_op,size_t batch_size,const void * input,void * output,pthreadpool_t threadpool)589 enum xnn_status xnn_setup_fully_connected_nc_f16(
590 xnn_operator_t fully_connected_op,
591 size_t batch_size,
592 const void* input,
593 void* output,
594 pthreadpool_t threadpool)
595 {
596 return setup_fully_connected_nc(
597 fully_connected_op, xnn_operator_type_fully_connected_nc_f16,
598 batch_size,
599 input, output,
600 XNN_INIT_FLAG_F32,
601 1 /* log2(sizeof(input element)) = log2(sizeof(uint16_t)) */,
602 1 /* log2(sizeof(filter element)) = log2(sizeof(uint16_t)) */,
603 sizeof(uint16_t) /* sizeof(bias element) */,
604 1 /* log2(sizeof(output element)) = log2(sizeof(uint16_t)) */,
605 &fully_connected_op->params.f16_minmax,
606 sizeof(fully_connected_op->params.f16_minmax),
607 pthreadpool_get_threads_count(threadpool));
608 }
609
xnn_setup_fully_connected_nc_f32(xnn_operator_t fully_connected_op,size_t batch_size,const float * input,float * output,pthreadpool_t threadpool)610 enum xnn_status xnn_setup_fully_connected_nc_f32(
611 xnn_operator_t fully_connected_op,
612 size_t batch_size,
613 const float* input,
614 float* output,
615 pthreadpool_t threadpool)
616 {
617 return setup_fully_connected_nc(
618 fully_connected_op, xnn_operator_type_fully_connected_nc_f32,
619 batch_size,
620 input, output,
621 XNN_INIT_FLAG_F32,
622 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
623 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
624 sizeof(float) /* sizeof(bias element) */,
625 2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
626 &fully_connected_op->params.f32_minmax,
627 sizeof(fully_connected_op->params.f32_minmax),
628 pthreadpool_get_threads_count(threadpool));
629 }
630
xnn_setup_fully_connected_nc_qs8(xnn_operator_t fully_connected_op,size_t batch_size,const int8_t * input,int8_t * output,pthreadpool_t threadpool)631 enum xnn_status xnn_setup_fully_connected_nc_qs8(
632 xnn_operator_t fully_connected_op,
633 size_t batch_size,
634 const int8_t* input,
635 int8_t* output,
636 pthreadpool_t threadpool)
637 {
638 return setup_fully_connected_nc(
639 fully_connected_op, xnn_operator_type_fully_connected_nc_qs8,
640 batch_size,
641 input, output,
642 XNN_INIT_FLAG_QS8,
643 0 /* log2(sizeof(input element)) = log2(sizeof(int8_t)) */,
644 0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
645 sizeof(int32_t) /* sizeof(bias element) */,
646 0 /* log2(sizeof(output element)) = log2(sizeof(int8_t)) */,
647 &fully_connected_op->params.qs8_conv_minmax,
648 sizeof(fully_connected_op->params.qs8_conv_minmax),
649 pthreadpool_get_threads_count(threadpool));
650 }
651
xnn_setup_fully_connected_nc_qu8(xnn_operator_t fully_connected_op,size_t batch_size,const uint8_t * input,uint8_t * output,pthreadpool_t threadpool)652 enum xnn_status xnn_setup_fully_connected_nc_qu8(
653 xnn_operator_t fully_connected_op,
654 size_t batch_size,
655 const uint8_t* input,
656 uint8_t* output,
657 pthreadpool_t threadpool)
658 {
659 return setup_fully_connected_nc(
660 fully_connected_op, xnn_operator_type_fully_connected_nc_qu8,
661 batch_size,
662 input, output,
663 XNN_INIT_FLAG_QU8,
664 0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
665 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
666 sizeof(int32_t) /* sizeof(bias element) */,
667 0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */,
668 &fully_connected_op->params.qu8_conv_minmax,
669 sizeof(fully_connected_op->params.qu8_conv_minmax),
670 pthreadpool_get_threads_count(threadpool));
671 }
672