xref: /aosp_15_r20/external/XNNPACK/src/math/sigmoid-f32-scalar-rr2-lut2048-p1-div.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 #include <math.h>
9 
10 #include <xnnpack/common.h>
11 #include <xnnpack/math.h>
12 #include <xnnpack/math-stubs.h>
13 
14 
15 // Table of exp2(k / 2048) values decremented (as integer) by (k << 12), k = 0..2048
16 extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_2048[2048];
17 
xnn_math_f32_sigmoid__scalar_rr2_lut2048_p1_div(size_t n,const float * input,float * output)18 void xnn_math_f32_sigmoid__scalar_rr2_lut2048_p1_div(
19     size_t n,
20     const float* input,
21     float* output)
22 {
23   assert(n % sizeof(float) == 0);
24 
25   // Large number such that ulp(magic bias) == exp2(-11)
26   const float vmagic_bias = 0x1.800000p12f;
27   const float vminus_log2e = -0x1.715476p0f;
28   // Mask for the lowest 11 bits
29   const uint32_t vindex_mask = UINT32_C(0x7FF);
30   // Last 13 bits are zeroes
31   const float vln2_hi = 0x1.600000p-1f;
32   const float vln2_lo = 0x1.7217F8p-8f;
33   // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * c1 on [-log(2)/2048, log(2)/2048]
34   const float vc1 = -0x1.FFFFFEp-1f;
35   const float vone = 1.0f;
36   // The largest z for which sigmoidf(-z) is normalized.
37   // This number is also the largest z for which expf(-z) is normalized.
38   const float vdenorm_cutoff = 0x1.5D589Ep+6f;
39 
40   for (; n != 0; n -= sizeof(float)) {
41     const float vx = *input++;
42 
43     // General structure of the algorithm:
44     //
45     //           / exp(x) / (1 + exp(x)) if x <= 0
46     //   f[x] :=
47     //           \ 1 - f[-x] if x >= 0
48     //
49     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
50     // then replace result with 1 - f[-z] if x >= 0.
51     const float vz = fabsf(vx);
52 
53     // Compute reduced argument n := round(-z / log(2), 11).
54     // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
55     // the large number back. The trick with adding large number is valid only within certain bounds
56     // (|-z / log(2)| <= 2**11, i.e. |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x
57     // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup
58     // the result for such inputs at the very end of the algorithm.
59     float vn = vz * vminus_log2e + vmagic_bias;
60 
61     // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized,
62     // i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
63     // in two steps:
64     // 1. Fetch 2**frac(n) from the table using the 11 low bits of n, as integer. Note that the fetched values are in
65     //    the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66     // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
67     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have
68     //    -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
69     //
70     // Shift bits 11:19 into 23:31 (position of floating-point exponent).
71     const uint32_t ve = float_as_uint32(vn) << 12;
72 
73     // Use bits 0:11 of n, as integer, as an index for table lookup of l := 2**frac(n).
74     const uint32_t vidx = float_as_uint32(vn) & vindex_mask;
75     // Adjust exponent of the value l fetched from the table to get the final s value.
76     const float vs = uint32_as_float(xnn_table_exp2minus_k_over_2048[vidx] + ve);
77 
78     // Subtract the large number back to get the final n := round(-z / log(2), 11) as a floating-point number.
79     vn -= vmagic_bias;
80 
81     // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2).
82     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
83     float vt = vn * vln2_hi + vz;
84     vt = vn * vln2_lo + vt;
85 
86     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
87     //   P(t) = 1 + t * c1 = 1 + p
88     const float vp = vt * vc1;
89 
90     // Reconstruct the exp(-z) value:
91     //   e = s * (1 + t * c1)
92     //     = s * (1 + p)
93     //     = s + s * p
94     const float vy = vp * vs + vs;
95 
96     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
97     float vf = vy / (vy + vone);
98 
99     // For inputs below denormal cutoff, replace output with +0.0f.
100     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101     if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
102       vf = 0.0f;
103     }
104 
105     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
106     if XNN_UNPREDICTABLE(vx > 0.0f) {
107       vf = vone - vf;
108     }
109 
110     *output++ = vf;
111   }
112 }
113