xref: /aosp_15_r20/external/skia/src/gpu/ganesh/vk/GrVkCaps.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrVkCaps_DEFINED
9 #define GrVkCaps_DEFINED
10 
11 #include "include/gpu/ganesh/GrBackendSurface.h"
12 #include "include/gpu/ganesh/GrTypes.h"
13 #include "include/gpu/vk/VulkanTypes.h"
14 #include "include/private/base/SkAssert.h"
15 #include "include/private/base/SkTArray.h"
16 #include "include/private/base/SkTDArray.h"
17 #include "include/private/base/SkTo.h"
18 #include "include/private/gpu/ganesh/GrTypesPriv.h"
19 #include "include/private/gpu/vk/SkiaVulkan.h"
20 #include "src/gpu/Swizzle.h"
21 #include "src/gpu/ganesh/GrCaps.h"
22 #include "src/gpu/ganesh/GrProgramDesc.h"
23 #include "src/gpu/ganesh/GrSamplerState.h"
24 
25 #include <cstddef>
26 #include <cstdint>
27 #include <initializer_list>
28 #include <memory>
29 #include <vector>
30 
31 class GrProgramInfo;
32 class GrRenderTarget;
33 class GrRenderTargetProxy;
34 class GrSurface;
35 class GrSurfaceProxy;
36 class GrVkRenderTarget;
37 enum class SkTextureCompressionType;
38 struct GrContextOptions;
39 struct SkIRect;
40 
41 namespace GrTest {
42 struct TestFormatColorTypeCombination;
43 }
44 
45 namespace skgpu {
46 class KeyBuilder;
47 class VulkanExtensions;
48 enum class Protected : bool;
49 struct VulkanInterface;
50 }  // namespace skgpu
51 
52 /**
53  * Stores some capabilities of a Vk backend.
54  */
55 class GrVkCaps : public GrCaps {
56 public:
57     /**
58      * Creates a GrVkCaps that is set such that nothing is supported. The init function should
59      * be called to fill out the caps.
60      */
61     GrVkCaps(const GrContextOptions&,
62              const skgpu::VulkanInterface*,
63              VkPhysicalDevice,
64              const VkPhysicalDeviceFeatures2&,
65              uint32_t instanceVersion,
66              uint32_t physicalDeviceVersion,
67              const skgpu::VulkanExtensions&,
68              skgpu::Protected);
69 
70     bool isFormatSRGB(const GrBackendFormat&) const override;
71 
72     bool isFormatTexturable(const GrBackendFormat&, GrTextureType) const override;
73     bool isVkFormatTexturable(VkFormat) const;
74 
isFormatCopyable(const GrBackendFormat &)75     bool isFormatCopyable(const GrBackendFormat&) const override { return true; }
76 
77     bool isFormatAsColorTypeRenderable(GrColorType ct,
78                                        const GrBackendFormat& format,
79                                        int sampleCount = 1) const override;
80     bool isFormatRenderable(const GrBackendFormat& format, int sampleCount) const override;
81     bool isFormatRenderable(VkFormat, int sampleCount) const;
82 
83     int getRenderTargetSampleCount(int requestedCount, const GrBackendFormat&) const override;
84     int getRenderTargetSampleCount(int requestedCount, VkFormat) const;
85 
86     int maxRenderTargetSampleCount(const GrBackendFormat&) const override;
87     int maxRenderTargetSampleCount(VkFormat format) const;
88 
89     SupportedWrite supportedWritePixelsColorType(GrColorType surfaceColorType,
90                                                  const GrBackendFormat& surfaceFormat,
91                                                  GrColorType srcColorType) const override;
92 
93     SurfaceReadPixelsSupport surfaceSupportsReadPixels(const GrSurface*) const override;
94 
isVkFormatTexturableLinearly(VkFormat format)95     bool isVkFormatTexturableLinearly(VkFormat format) const {
96         return SkToBool(FormatInfo::kTexturable_Flag & this->getFormatInfo(format).fLinearFlags);
97     }
98 
formatCanBeDstofBlit(VkFormat format,bool linearTiled)99     bool formatCanBeDstofBlit(VkFormat format, bool linearTiled) const {
100         const FormatInfo& info = this->getFormatInfo(format);
101         const uint16_t& flags = linearTiled ? info.fLinearFlags : info.fOptimalFlags;
102         return SkToBool(FormatInfo::kBlitDst_Flag & flags);
103     }
104 
formatCanBeSrcofBlit(VkFormat format,bool linearTiled)105     bool formatCanBeSrcofBlit(VkFormat format, bool linearTiled) const {
106         const FormatInfo& info = this->getFormatInfo(format);
107         const uint16_t& flags = linearTiled ? info.fLinearFlags : info.fOptimalFlags;
108         return SkToBool(FormatInfo::kBlitSrc_Flag & flags);
109     }
110 
111     // Gets the GrColorType that should be used to transfer data in/out of a transfer buffer to
112     // write/read data when using a VkFormat with a specified color type.
113     GrColorType transferColorType(VkFormat, GrColorType surfaceColorType) const;
114 
115     // On some GPUs (Windows Nvidia and Imagination) calls to QueueWaitIdle return before actually
116     // signalling the fences on the command buffers even though they have completed. This causes
117     // issues when then deleting the command buffers. Therefore we additionally will call
118     // vkWaitForFences on each outstanding command buffer to make sure the driver signals the fence.
mustSyncCommandBuffersWithQueue()119     bool mustSyncCommandBuffersWithQueue() const { return fMustSyncCommandBuffersWithQueue; }
120 
121     // Returns true if we should always make dedicated allocations for VkImages.
shouldAlwaysUseDedicatedImageMemory()122     bool shouldAlwaysUseDedicatedImageMemory() const {
123         return fShouldAlwaysUseDedicatedImageMemory;
124     }
125 
126     // Always use a transfer buffer instead of vkCmdUpdateBuffer to upload data to a VkBuffer.
avoidUpdateBuffers()127     bool avoidUpdateBuffers() const { return fAvoidUpdateBuffers; }
128 
129     /**
130      * Returns both a supported and most preferred stencil format to use in draws.
131      */
preferredStencilFormat()132     VkFormat preferredStencilFormat() const { return fPreferredStencilFormat; }
133 
134     // Returns total number of bits used by stencil + depth + padding
GetStencilFormatTotalBitCount(VkFormat format)135     static int GetStencilFormatTotalBitCount(VkFormat format) {
136         switch (format) {
137             case VK_FORMAT_S8_UINT:
138                 return 8;
139             case VK_FORMAT_D24_UNORM_S8_UINT:
140                 return 32;
141             case VK_FORMAT_D32_SFLOAT_S8_UINT:
142                 // can optionally have 24 unused bits at the end so we assume the total bits is 64.
143                 return 64;
144             default:
145                 SkASSERT(false);
146                 return 0;
147         }
148     }
149 
150     // Returns whether the device supports VK_KHR_Swapchain. Internally Skia never uses any of the
151     // swapchain functions, but we may need to transition to and from the
152     // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR image layout, so we must know whether that layout is
153     // supported.
supportsSwapchain()154     bool supportsSwapchain() const { return fSupportsSwapchain; }
155 
156     // Returns whether the device supports the ability to extend VkPhysicalDeviceProperties struct.
supportsPhysicalDeviceProperties2()157     bool supportsPhysicalDeviceProperties2() const { return fSupportsPhysicalDeviceProperties2; }
158     // Returns whether the device supports the ability to extend VkMemoryRequirements struct.
supportsMemoryRequirements2()159     bool supportsMemoryRequirements2() const { return fSupportsMemoryRequirements2; }
160 
161     // Returns whether the device supports the ability to extend the vkBindMemory call.
supportsBindMemory2()162     bool supportsBindMemory2() const { return fSupportsBindMemory2; }
163 
164     // Returns whether or not the device suports the various API maintenance fixes to Vulkan 1.0. In
165     // Vulkan 1.1 all these maintenance are part of the core spec.
supportsMaintenance1()166     bool supportsMaintenance1() const { return fSupportsMaintenance1; }
supportsMaintenance2()167     bool supportsMaintenance2() const { return fSupportsMaintenance2; }
supportsMaintenance3()168     bool supportsMaintenance3() const { return fSupportsMaintenance3; }
169 
170     // Returns true if the device supports passing in a flag to say we are using dedicated GPU when
171     // allocating memory. For some devices this allows them to return more optimized memory knowning
172     // they will never need to suballocate amonst multiple objects.
supportsDedicatedAllocation()173     bool supportsDedicatedAllocation() const { return fSupportsDedicatedAllocation; }
174 
175     // Returns true if the device supports importing of external memory into Vulkan memory.
supportsExternalMemory()176     bool supportsExternalMemory() const { return fSupportsExternalMemory; }
177     // Returns true if the device supports importing Android hardware buffers into Vulkan memory.
supportsAndroidHWBExternalMemory()178     bool supportsAndroidHWBExternalMemory() const { return fSupportsAndroidHWBExternalMemory; }
179 
180     // Returns true if it supports ycbcr conversion for samplers
supportsYcbcrConversion()181     bool supportsYcbcrConversion() const { return fSupportsYcbcrConversion; }
182 
183     // Returns the number of descriptor slots used by immutable ycbcr VkImages.
184     //
185     // TODO: We should update this to return a count for a specific format or external format. We
186     // can use vkGetPhysicalDeviceImageFormatProperties2 with a
187     // VkSamplerYcbcrConversionImageFormatProperties to query this. However, right now that call
188     // does not support external android formats which is where the majority of ycbcr images are
189     // coming from. So for now we stay safe and always return 3 here which is the max value that the
190     // count could be for any format.
ycbcrCombinedImageSamplerDescriptorCount()191     uint32_t ycbcrCombinedImageSamplerDescriptorCount() const {
192         return 3;
193     }
194 
195     // Returns true if the VK_EXT_image_drm_format_modifier is enabled.
supportsDRMFormatModifiers()196     bool supportsDRMFormatModifiers() const { return fSupportsDRMFormatModifiers; }
197 
supportsDeviceFaultInfo()198     bool supportsDeviceFaultInfo() const { return fSupportsDeviceFaultInfo; }
199 
supportsFrameBoundary()200     bool supportsFrameBoundary() const { return fSupportsFrameBoundary; }
201 
202     // Returns whether we prefer to record draws directly into a primary command buffer.
preferPrimaryOverSecondaryCommandBuffers()203     bool preferPrimaryOverSecondaryCommandBuffers() const {
204         return fPreferPrimaryOverSecondaryCommandBuffers;
205     }
206 
maxPerPoolCachedSecondaryCommandBuffers()207     int maxPerPoolCachedSecondaryCommandBuffers() const {
208         return fMaxPerPoolCachedSecondaryCommandBuffers;
209     }
210 
maxInputAttachmentDescriptors()211     uint32_t maxInputAttachmentDescriptors() const { return fMaxInputAttachmentDescriptors; }
212 
maxSamplerAnisotropy()213     float maxSamplerAnisotropy() const { return fMaxSamplerAnisotropy; }
214 
mustInvalidatePrimaryCmdBufferStateAfterClearAttachments()215     bool mustInvalidatePrimaryCmdBufferStateAfterClearAttachments() const {
216         return fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments;
217     }
218 
219     // Returns whether a pure GPU accessible buffer is more performant to read than a buffer that is
220     // also host visible. If so then in some cases we may prefer the cost of doing a copy to the
221     // buffer. This typically would only be the case for buffers that are written once and read
222     // many times on the gpu.
gpuOnlyBuffersMorePerformant()223     bool gpuOnlyBuffersMorePerformant() const { return fGpuOnlyBuffersMorePerformant; }
224 
225     // For our CPU write and GPU read buffers (vertex, uniform, etc.), should we keep these buffers
226     // persistently mapped. In general the answer will be yes. The main case we don't do this is
227     // when using special memory that is DEVICE_LOCAL and HOST_VISIBLE on discrete GPUs.
shouldPersistentlyMapCpuToGpuBuffers()228     bool shouldPersistentlyMapCpuToGpuBuffers() const {
229         return fShouldPersistentlyMapCpuToGpuBuffers;
230     }
231 
232     // The max draw count that can be passed into indirect draw calls.
maxDrawIndirectDrawCount()233     uint32_t  maxDrawIndirectDrawCount() const { return fMaxDrawIndirectDrawCount; }
234 
235     /**
236      * Helpers used by canCopySurface. In all cases if the SampleCnt parameter is zero that means
237      * the surface is not a render target, otherwise it is the number of samples in the render
238      * target.
239      */
240     bool canCopyImage(VkFormat dstFormat,
241                       int dstSampleCnt,
242                       bool dstHasYcbcr,
243                       VkFormat srcFormat,
244                       int srcSamplecnt,
245                       bool srcHasYcbcr) const;
246 
247     bool canCopyAsBlit(VkFormat dstConfig,
248                        int dstSampleCnt,
249                        bool dstIsLinear,
250                        bool dstHasYcbcr,
251                        VkFormat srcConfig,
252                        int srcSampleCnt,
253                        bool srcIsLinear,
254                        bool srcHasYcbcr) const;
255 
256     bool canCopyAsResolve(VkFormat dstConfig,
257                           int dstSampleCnt,
258                           bool dstHasYcbcr,
259                           VkFormat srcConfig,
260                           int srcSamplecnt,
261                           bool srcHasYcbcr) const;
262 
getBackendFormatFromCompressionType(SkTextureCompressionType)263     GrBackendFormat getBackendFormatFromCompressionType(SkTextureCompressionType) const override;
264 
265     VkFormat getFormatFromColorType(GrColorType colorType) const {
266         int idx = static_cast<int>(colorType);
267         return fColorTypeToFormatTable[idx];
268     }
269 
270     skgpu::Swizzle getWriteSwizzle(const GrBackendFormat&, GrColorType) const override;
271 
272     uint64_t computeFormatKey(const GrBackendFormat&) const override;
273 
274     int getFragmentUniformBinding() const;
275     int getFragmentUniformSet() const;
276 
277     void addExtraSamplerKey(skgpu::KeyBuilder*,
278                             GrSamplerState,
279                             const GrBackendFormat&) const override;
280 
281     GrProgramDesc makeDesc(GrRenderTarget*,
282                            const GrProgramInfo&,
283                            ProgramDescOverrideFlags) const override;
284 
285     GrInternalSurfaceFlags getExtraSurfaceFlagsForDeferredRT() const override;
286 
287     VkShaderStageFlags getPushConstantStageFlags() const;
288 
mustLoadFullImageWithDiscardableMSAA()289     bool mustLoadFullImageWithDiscardableMSAA() const {
290         return fMustLoadFullImageWithDiscardableMSAA;
291     }
supportsDiscardableMSAAForDMSAA()292     bool supportsDiscardableMSAAForDMSAA() const { return fSupportsDiscardableMSAAForDMSAA; }
293     bool renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget*) const;
294     bool programInfoWillUseDiscardableMSAA(const GrProgramInfo&) const;
295 
dmsaaResolveCanBeUsedAsTextureInSameRenderPass()296     bool dmsaaResolveCanBeUsedAsTextureInSameRenderPass() const override { return false; }
297 
supportsMemorylessAttachments()298     bool supportsMemorylessAttachments() const { return fSupportsMemorylessAttachments; }
299 
300 #if defined(GPU_TEST_UTILS)
301     std::vector<GrTest::TestFormatColorTypeCombination> getTestingCombinations() const override;
302 #endif
303 
304 private:
305     enum VkVendor {
306         kAMD_VkVendor = 4098,
307         kARM_VkVendor = 5045,
308         kGoogle_VkVendor = 0x1AE0,
309         kImagination_VkVendor = 4112,
310         kIntel_VkVendor = 32902,
311         kNvidia_VkVendor = 4318,
312         kQualcomm_VkVendor = 20803,
313     };
314 
315     enum class IntelGPUType {
316         // 9th gen
317         kSkyLake,
318 
319         // 11th gen
320         kIceLake,
321 
322         // 12th gen
323         kRocketLake,
324         kTigerLake,
325         kAlderLake,
326 
327         kOther
328     };
329 
330     enum DeviceID {
331         kSwiftshader_DeviceID = 0xC0DE, // As listed in Swiftshader code this may be a placeholder
332                                         // value but works for now.
333     };
334 
335     static IntelGPUType GetIntelGPUType(uint32_t deviceID);
GetIntelGen(IntelGPUType type)336     static int GetIntelGen(IntelGPUType type) {
337         switch (type) {
338             case IntelGPUType::kSkyLake:
339                 return 9;
340             case IntelGPUType::kIceLake:
341                 return 11;
342             case IntelGPUType::kRocketLake: // fall through
343             case IntelGPUType::kTigerLake:  // fall through
344             case IntelGPUType::kAlderLake:
345                 return 12;
346             case IntelGPUType::kOther:
347                 // For now all our workaround checks are in the form of "if gen > some_value". So
348                 // we can return 0 for kOther which means we won't put in the new workaround for
349                 // older gens which is fine. If we stay on top of adding support for new gen
350                 // intel devices we shouldn't hit cases where we'd need to change this pattern.
351                 return 0;
352         }
353         SkUNREACHABLE;
354     }
355 
356     void init(const GrContextOptions&,
357               const skgpu::VulkanInterface*,
358               VkPhysicalDevice,
359               const VkPhysicalDeviceFeatures2&,
360               uint32_t physicalDeviceVersion,
361               const skgpu::VulkanExtensions&,
362               GrProtected);
363     void initGrCaps(const skgpu::VulkanInterface* vkInterface,
364                     VkPhysicalDevice physDev,
365                     const VkPhysicalDeviceProperties&,
366                     const VkPhysicalDeviceMemoryProperties&,
367                     const VkPhysicalDeviceFeatures2&,
368                     const skgpu::VulkanExtensions&);
369     void initShaderCaps(const VkPhysicalDeviceProperties&, const VkPhysicalDeviceFeatures2&);
370 
371     void initFormatTable(const GrContextOptions&,
372                          const skgpu::VulkanInterface*,
373                          VkPhysicalDevice,
374                          const VkPhysicalDeviceProperties&,
375                          const VkPhysicalDeviceFeatures2&,
376                          const skgpu::VulkanExtensions&);
377     void initStencilFormat(const skgpu::VulkanInterface* iface, VkPhysicalDevice physDev);
378 
379     void applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties&);
380 
381     bool onSurfaceSupportsWritePixels(const GrSurface*) const override;
382     bool onCanCopySurface(const GrSurfaceProxy* dst, const SkIRect& dstRect,
383                           const GrSurfaceProxy* src, const SkIRect& srcRect) const override;
384     GrBackendFormat onGetDefaultBackendFormat(GrColorType) const override;
385 
386     bool onAreColorTypeAndFormatCompatible(GrColorType, const GrBackendFormat&) const override;
387 
388     SupportedRead onSupportedReadPixelsColorType(GrColorType, const GrBackendFormat&,
389                                                  GrColorType) const override;
390 
391     skgpu::Swizzle onGetReadSwizzle(const GrBackendFormat&, GrColorType) const override;
392 
393     GrDstSampleFlags onGetDstSampleFlagsForProxy(const GrRenderTargetProxy*) const override;
394 
395     bool onSupportsDynamicMSAA(const GrRenderTargetProxy*) const override;
396 
397     // ColorTypeInfo for a specific format
398     struct ColorTypeInfo {
399         GrColorType fColorType = GrColorType::kUnknown;
400         GrColorType fTransferColorType = GrColorType::kUnknown;
401         enum {
402             kUploadData_Flag = 0x1,
403             // Does Ganesh itself support rendering to this colorType & format pair. Renderability
404             // still additionally depends on if the format itself is renderable.
405             kRenderable_Flag = 0x2,
406             // Indicates that this colorType is supported only if we are wrapping a texture with
407             // the given format and colorType. We do not allow creation with this pair.
408             kWrappedOnly_Flag = 0x4,
409         };
410         uint32_t fFlags = 0;
411 
412         skgpu::Swizzle fReadSwizzle;
413         skgpu::Swizzle fWriteSwizzle;
414     };
415 
416     struct FormatInfo {
colorTypeFlagsFormatInfo417         uint32_t colorTypeFlags(GrColorType colorType) const {
418             for (int i = 0; i < fColorTypeInfoCount; ++i) {
419                 if (fColorTypeInfos[i].fColorType == colorType) {
420                     return fColorTypeInfos[i].fFlags;
421                 }
422             }
423             return 0;
424         }
425 
426         void init(const GrContextOptions&,
427                   const skgpu::VulkanInterface*,
428                   VkPhysicalDevice,
429                   const VkPhysicalDeviceProperties&,
430                   VkFormat);
431         static void InitFormatFlags(VkFormatFeatureFlags, uint16_t* flags);
432         void initSampleCounts(const GrContextOptions&,
433                               const skgpu::VulkanInterface*,
434                               VkPhysicalDevice,
435                               const VkPhysicalDeviceProperties&,
436                               VkFormat);
437 
438         enum {
439             kTexturable_Flag = 0x1,
440             kRenderable_Flag = 0x2,
441             kBlitSrc_Flag    = 0x4,
442             kBlitDst_Flag    = 0x8,
443         };
444 
445         uint16_t fOptimalFlags = 0;
446         uint16_t fLinearFlags = 0;
447 
448         SkTDArray<int> fColorSampleCounts;
449 
450         std::unique_ptr<ColorTypeInfo[]> fColorTypeInfos;
451         int fColorTypeInfoCount = 0;
452     };
453     static const size_t kNumVkFormats = 25;
454     FormatInfo fFormatTable[kNumVkFormats];
455 
456     FormatInfo& getFormatInfo(VkFormat);
457     const FormatInfo& getFormatInfo(VkFormat) const;
458 
459     VkFormat fColorTypeToFormatTable[kGrColorTypeCnt];
460     void setColorType(GrColorType, std::initializer_list<VkFormat> formats);
461 
462     VkFormat fPreferredStencilFormat;
463 
464     skia_private::STArray<1, skgpu::VulkanYcbcrConversionInfo> fYcbcrInfos;
465 
466     bool fMustSyncCommandBuffersWithQueue = false;
467     bool fShouldAlwaysUseDedicatedImageMemory = false;
468 
469     bool fAvoidUpdateBuffers = false;
470 
471     bool fSupportsSwapchain = false;
472 
473     bool fSupportsPhysicalDeviceProperties2 = false;
474     bool fSupportsMemoryRequirements2 = false;
475     bool fSupportsBindMemory2 = false;
476     bool fSupportsMaintenance1 = false;
477     bool fSupportsMaintenance2 = false;
478     bool fSupportsMaintenance3 = false;
479 
480     bool fSupportsDedicatedAllocation = false;
481     bool fSupportsExternalMemory = false;
482     bool fSupportsAndroidHWBExternalMemory = false;
483 
484     bool fSupportsYcbcrConversion = false;
485 
486     bool fSupportsDRMFormatModifiers = false;
487 
488     bool fSupportsDeviceFaultInfo = false;
489 
490     bool fSupportsFrameBoundary = false;
491 
492     bool fPreferPrimaryOverSecondaryCommandBuffers = true;
493     bool fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = false;
494 
495     bool fGpuOnlyBuffersMorePerformant = false;
496     bool fShouldPersistentlyMapCpuToGpuBuffers = true;
497 
498     // We default this to 100 since we already cap the max render tasks at 100 before doing a
499     // submission in the GrDrawingManager, so we shouldn't be going over 100 secondary command
500     // buffers per primary anyways.
501     int fMaxPerPoolCachedSecondaryCommandBuffers = 100;
502 
503     uint32_t fMaxInputAttachmentDescriptors = 0;
504 
505     float fMaxSamplerAnisotropy = 1.f;
506 
507     bool fMustLoadFullImageWithDiscardableMSAA = false;
508     bool fSupportsDiscardableMSAAForDMSAA = true;
509     bool fSupportsMemorylessAttachments = false;
510 
511     uint32_t fMaxDrawIndirectDrawCount = 0;
512 
513     using INHERITED = GrCaps;
514 };
515 
516 #endif
517