xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClGemmLowpReductionKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmLowpReductionKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/KernelDescriptors.h"
29 
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 
33 #include "support/Cast.h"
34 #include "support/StringSupport.h"
35 
36 namespace arm_compute
37 {
38 namespace opencl
39 {
40 namespace kernels
41 {
42 namespace
43 {
validate_arguments_matrix_a_reduction(const ITensorInfo * src,const ITensorInfo * dst)44 Status validate_arguments_matrix_a_reduction(const ITensorInfo *src, const ITensorInfo *dst)
45 {
46     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
47     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8);
48 
49     if(dst->total_size() > 0)
50     {
51         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
52         ARM_COMPUTE_RETURN_ERROR_ON_MSG(dst->dimension(0) != src->dimension(1), "Output vector must have length equal to the number of rows of the input matrix");
53     }
54     return Status{};
55 }
56 
validate_arguments_matrix_b_reduction(const ITensorInfo * src,const ITensorInfo * dst)57 Status validate_arguments_matrix_b_reduction(const ITensorInfo *src, const ITensorInfo *dst)
58 {
59     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
60     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
61 
62     if(dst->total_size() > 0)
63     {
64         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
65         ARM_COMPUTE_RETURN_ERROR_ON_MSG(dst->dimension(0) != src->dimension(0), "Output vector must have length equal to the number of columns of the input matrix");
66     }
67     return Status{};
68 }
69 } // namespace
70 
IClGemmLowpReductionKernel()71 IClGemmLowpReductionKernel::IClGemmLowpReductionKernel()
72 {
73     _type = CLKernelType::ELEMENTWISE;
74 }
75 
configure(const CLCompileContext & compile_context,const ITensorInfo * mtx_a,ITensorInfo * vector_sum_row,const GEMMLowpReductionKernelInfo & info)76 void ClGemmLowpMatrixAReductionKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *mtx_a, ITensorInfo *vector_sum_row, const GEMMLowpReductionKernelInfo &info)
77 {
78     // Perform validate step
79     ARM_COMPUTE_ERROR_ON_NULLPTR(mtx_a, vector_sum_row);
80     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_a_reduction(mtx_a, vector_sum_row));
81 
82     // Output auto initialization if not yet initialized
83     auto_init_if_empty(*vector_sum_row, TensorShape(mtx_a->dimension(1)), 1, DataType::S32);
84 
85     auto padding_info = get_padding_info({ mtx_a, vector_sum_row });
86 
87     // Set the arguments to pass at compile time
88     CLBuildOptions build_opts;
89     build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(mtx_a->dimension(0)));
90     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(mtx_a->data_type()));
91     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(mtx_a->data_type()));
92     build_opts.add_option_if(info.mul_by_scalar, "-DSCALAR=" + support::cpp11::to_string(info.scalar));
93 
94     const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
95 
96     std::string kernel_name = "gemmlowp_matrix_a_reduction" + std::string(is_dot8_supported ? "_dot8" : "");
97 
98     // A macro guard to compile ONLY the kernel of interest
99     build_opts.add_option("-D" + upper_string(kernel_name));
100 
101     // Create kernel
102     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
103 
104     // Configure kernel window
105     // This kernel does not need padding
106     Window win = calculate_max_window(*vector_sum_row, Steps());
107     ICLKernel::configure_internal(win);
108 
109     _config_id = kernel_name;
110     _config_id += "_";
111     _config_id += support::cpp11::to_string(mtx_a->dimension(0));
112     _config_id += "_";
113     _config_id += support::cpp11::to_string(mtx_a->dimension(1));
114     _config_id += "_";
115     _config_id += support::cpp11::to_string(mtx_a->dimension(2));
116 
117     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
118 }
119 
validate(const ITensorInfo * mtx_a,const ITensorInfo * vector_sum_row,const GEMMLowpReductionKernelInfo & info)120 Status ClGemmLowpMatrixAReductionKernel::validate(const ITensorInfo *mtx_a, const ITensorInfo *vector_sum_row, const GEMMLowpReductionKernelInfo &info)
121 {
122     ARM_COMPUTE_UNUSED(info);
123     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_a_reduction(mtx_a, vector_sum_row));
124 
125     return Status{};
126 }
127 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)128 void ClGemmLowpMatrixAReductionKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
129 {
130     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
131     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
132 
133     const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
134     auto       dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
135 
136     Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimY);
137     Window slice_in  = collapsed.first_slice_window_2D();
138     Window slice_out = collapsed.first_slice_window_2D();
139 
140     // Setup input slice. Its dimensions are increased in the cl kernel.
141     slice_in.set(Window::DimX, Window::Dimension(0, 0, 0));
142     slice_in.set(Window::DimY, Window::Dimension(0, 0, 0));
143     slice_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
144 
145     do
146     {
147         unsigned int idx = 0;
148         add_3D_tensor_argument(idx, src, slice_in);
149         add_2D_tensor_argument(idx, dst, slice_out);
150         enqueue(queue, *this, slice_out, lws_hint());
151     }
152     while(collapsed.slide_window_slice_2D(slice_out));
153 }
154 
configure(const CLCompileContext & compile_context,const ITensorInfo * mtx_b,ITensorInfo * vector_sum_col,const GEMMLowpReductionKernelInfo & info)155 void ClGemmLowpMatrixBReductionKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *mtx_b, ITensorInfo *vector_sum_col, const GEMMLowpReductionKernelInfo &info)
156 {
157     ARM_COMPUTE_ERROR_ON_NULLPTR(mtx_b, vector_sum_col);
158     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_b_reduction(mtx_b, vector_sum_col));
159 
160     // Output auto initialization if not yet initialized
161     auto_init_if_empty(*vector_sum_col, TensorShape(mtx_b->dimension(0)), 1, DataType::S32);
162 
163     auto padding_info = get_padding_info({ mtx_b, vector_sum_col });
164 
165     const unsigned int num_elems_processed_per_iteration = adjust_vec_size(16, mtx_b->dimension(0));
166 
167     // Set the arguments to pass at compile time
168     CLBuildOptions build_opts;
169     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
170     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(mtx_b->dimension(0) % num_elems_processed_per_iteration));
171     build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(mtx_b->dimension(0)));
172     build_opts.add_option("-DROWS_B=" + support::cpp11::to_string(mtx_b->dimension(1)));
173     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(mtx_b->data_type()));
174     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(mtx_b->data_type()));
175     build_opts.add_option_if(info.mul_by_scalar, "-DSCALAR=" + support::cpp11::to_string(info.scalar));
176 
177     const std::string kernel_name = "gemmlowp_matrix_b_reduction";
178 
179     // A macro guard to compile ONLY the kernel of interest
180     build_opts.add_option("-D" + upper_string(kernel_name));
181 
182     // Create kernel
183     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
184 
185     // Configure kernel window
186     Window win = calculate_max_window(*vector_sum_col, Steps(num_elems_processed_per_iteration));
187     IClKernel::configure_internal(win);
188 
189     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
190 }
191 
validate(const ITensorInfo * mtx_b,const ITensorInfo * vector_sum_col,const GEMMLowpReductionKernelInfo & info)192 Status ClGemmLowpMatrixBReductionKernel::validate(const ITensorInfo *mtx_b, const ITensorInfo *vector_sum_col, const GEMMLowpReductionKernelInfo &info)
193 {
194     ARM_COMPUTE_UNUSED(info);
195     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_b_reduction(mtx_b, vector_sum_col));
196 
197     return Status{};
198 }
199 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)200 void ClGemmLowpMatrixBReductionKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
201 {
202     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
203     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
204 
205     const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
206     auto       dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
207 
208     Window collapsed = window.collapse_if_possible(IKernel::window(), Window::DimY);
209 
210     Window slice_out = collapsed.first_slice_window_2D();
211     Window slice_in  = slice_out;
212 
213     slice_in.set(Window::DimY, Window::Dimension(0, 0, 0));
214     slice_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
215 
216     do
217     {
218         unsigned int idx = 0;
219         add_3D_tensor_argument(idx, src, slice_in);
220         add_2D_tensor_argument(idx, dst, slice_out);
221         enqueue(queue, *this, slice_out, lws_hint());
222     }
223     while(collapsed.slide_window_slice_2D(slice_out));
224 }
225 } // namespace kernels
226 } // namespace opencl
227 } // namespace arm_compute
228