xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClGemmLowpQuantizeDownInt32ScaleKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2020-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmLowpQuantizeDownInt32ScaleKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/Helpers.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31 
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 
35 #include "support/Cast.h"
36 #include "support/StringSupport.h"
37 
38 namespace arm_compute
39 {
40 namespace opencl
41 {
42 namespace kernels
43 {
44 namespace
45 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)46 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, const GEMMLowpOutputStageInfo *output_stage)
47 {
48     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::S32);
49     ARM_COMPUTE_RETURN_ERROR_ON((output_stage->output_data_type != DataType::QASYMM8) && (output_stage->output_data_type != DataType::QASYMM8_SIGNED));
50     ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
51     ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
52                                 || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
53 
54     // Check biases if exist
55     if(bias != nullptr)
56     {
57         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias);
58         ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
59         ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != bias->dimension(0));
60     }
61 
62     if(dst->total_size() != 0)
63     {
64         ARM_COMPUTE_RETURN_ERROR_ON_MSG(dst->data_type() != output_stage->output_data_type, "Mismatching output data type");
65         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
66     }
67 
68     return Status{};
69 }
70 } //namespace
71 
ClGemmLowpQuantizeDownInt32ScaleKernel()72 ClGemmLowpQuantizeDownInt32ScaleKernel::ClGemmLowpQuantizeDownInt32ScaleKernel()
73 {
74     _type = CLKernelType::ELEMENTWISE;
75 }
76 
validate(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)77 Status ClGemmLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, const GEMMLowpOutputStageInfo *output_stage)
78 {
79     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
80     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, bias, dst, output_stage));
81 
82     return Status{};
83 }
84 
configure(const CLCompileContext & compile_context,const ITensorInfo * src,const ITensorInfo * bias,ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)85 void ClGemmLowpQuantizeDownInt32ScaleKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src, const ITensorInfo *bias, ITensorInfo *dst,
86                                                        const GEMMLowpOutputStageInfo *output_stage)
87 {
88     // Perform validate step
89     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
90     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, output_stage));
91 
92     auto padding_info = get_padding_info({ src, bias, dst });
93 
94     // Output auto inizialitation if not yet initialized
95     auto_init_if_empty(*dst, src->clone()->set_data_type(output_stage->output_data_type));
96 
97     const unsigned int num_elems_processed_per_iteration = adjust_vec_size(4, src->dimension(0));
98 
99     // Set the arguments to pass at compile time
100     auto           min = output_stage->gemmlowp_min_bound;
101     auto           max = output_stage->gemmlowp_max_bound;
102     CLBuildOptions build_opts;
103     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
104     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % num_elems_processed_per_iteration));
105     build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage->gemmlowp_offset));
106     build_opts.add_option("-DRESULT_MULT_INT=" + support::cpp11::to_string(output_stage->gemmlowp_multiplier));
107     build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage->gemmlowp_shift));
108     build_opts.add_option_if((min > std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))) && (min != max),
109                              "-DMIN_BOUND=" + support::cpp11::to_string(min));
110     build_opts.add_option_if((max < std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))) && (min != max),
111                              "-DMAX_BOUND=" + support::cpp11::to_string(max));
112     build_opts.add_option("-DOUTPUT_DATA_TYPE=" + get_cl_type_from_data_type(dst->data_type()));
113     build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
114 
115     const std::string kernel_name = "gemmlowp_output_stage_quantize_down";
116 
117     // A macro guard to compile ONLY the kernel of interest
118     build_opts.add_option("-D" + upper_string(kernel_name));
119 
120     // Create kernel
121     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
122 
123     // Configure kernel window
124     Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration));
125     ICLKernel::configure_internal(win);
126 
127     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
128 }
129 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)130 void ClGemmLowpQuantizeDownInt32ScaleKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
131 {
132     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
133     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
134 
135     const auto src  = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
136     const auto bias = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_BIAS));
137     auto       dst  = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
138 
139     Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
140     Window slice     = collapsed.first_slice_window_3D();
141 
142     unsigned int idx1 = num_arguments_per_3D_tensor();
143     if(bias != nullptr)
144     {
145         Window biases_slice(slice);
146         biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
147         biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
148         add_1D_tensor_argument(idx1, bias, biases_slice);
149     }
150 
151     do
152     {
153         unsigned int idx = 0;
154         add_3D_tensor_argument(idx, src, slice);
155         add_3D_tensor_argument(idx1, dst, slice);
156         enqueue(queue, *this, slice, lws_hint());
157     }
158     while(collapsed.slide_window_slice_3D(slice));
159 }
160 } // namespace kernels
161 } // namespace opencl
162 } // namespace arm_compute