1 use crate::convert::*;
2 use crate::operations::folded_multiply;
3 use crate::operations::read_small;
4 use crate::operations::MULTIPLE;
5 use crate::random_state::PI;
6 use crate::RandomState;
7 use core::hash::Hasher;
8 
9 const ROT: u32 = 23; //17
10 
11 /// A `Hasher` for hashing an arbitrary stream of bytes.
12 ///
13 /// Instances of [`AHasher`] represent state that is updated while hashing data.
14 ///
15 /// Each method updates the internal state based on the new data provided. Once
16 /// all of the data has been provided, the resulting hash can be obtained by calling
17 /// `finish()`
18 ///
19 /// [Clone] is also provided in case you wish to calculate hashes for two different items that
20 /// start with the same data.
21 ///
22 #[derive(Debug, Clone)]
23 pub struct AHasher {
24     buffer: u64,
25     pad: u64,
26     extra_keys: [u64; 2],
27 }
28 
29 impl AHasher {
30     /// Creates a new hasher keyed to the provided key.
31     #[inline]
32     #[allow(dead_code)] // Is not called if non-fallback hash is used.
new_with_keys(key1: u128, key2: u128) -> AHasher33     pub(crate) fn new_with_keys(key1: u128, key2: u128) -> AHasher {
34         let pi: [u128; 2] = PI.convert();
35         let key1: [u64; 2] = (key1 ^ pi[0]).convert();
36         let key2: [u64; 2] = (key2 ^ pi[1]).convert();
37         AHasher {
38             buffer: key1[0],
39             pad: key1[1],
40             extra_keys: key2,
41         }
42     }
43 
44     #[allow(unused)] // False positive
test_with_keys(key1: u128, key2: u128) -> Self45     pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self {
46         let key1: [u64; 2] = key1.convert();
47         let key2: [u64; 2] = key2.convert();
48         Self {
49             buffer: key1[0],
50             pad: key1[1],
51             extra_keys: key2,
52         }
53     }
54 
55     #[inline]
56     #[allow(dead_code)] // Is not called if non-fallback hash is used.
from_random_state(rand_state: &RandomState) -> AHasher57     pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher {
58         AHasher {
59             buffer: rand_state.k1,
60             pad: rand_state.k0,
61             extra_keys: [rand_state.k2, rand_state.k3],
62         }
63     }
64 
65     /// This update function has the goal of updating the buffer with a single multiply
66     /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
67     /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
68     /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
69     /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
70     /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
71     /// subsequent update that also differed in this bit could result in a predictable collision.
72     ///
73     /// This version avoids this vulnerability while still only using a single multiply. It takes advantage
74     /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
75     /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
76     /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
77     /// Then the upper bits are xored with the lower bits to produce a single 64 bit result.
78     ///
79     /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
80     /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
81     /// If the multiple is chosen well, this creates a long period, decent quality PRNG.
82     /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
83     /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
84     ///
85     /// This is impervious to attack because every bit buffer at the end is dependent on every bit in
86     /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
87     /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
88     /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
89     /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
90     /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
91     /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
92     /// attacker somehow knew part of (but not all) the contents of the buffer before hand,
93     /// they would not be able to predict any of the bits in the buffer at the end.
94     #[inline(always)]
update(&mut self, new_data: u64)95     fn update(&mut self, new_data: u64) {
96         self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
97     }
98 
99     /// Similar to the above this function performs an update using a "folded multiply".
100     /// However it takes in 128 bits of data instead of 64. Both halves must be masked.
101     ///
102     /// This makes it impossible for an attacker to place a single bit difference between
103     /// two blocks so as to cancel each other.
104     ///
105     /// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must
106     /// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used.
107     /// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits
108     /// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require
109     /// knowing the keys.
110     #[inline(always)]
large_update(&mut self, new_data: u128)111     fn large_update(&mut self, new_data: u128) {
112         let block: [u64; 2] = new_data.convert();
113         let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
114         self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT);
115     }
116 
117     #[inline]
118     #[cfg(feature = "specialize")]
short_finish(&self) -> u64119     fn short_finish(&self) -> u64 {
120         folded_multiply(self.buffer, self.pad)
121     }
122 }
123 
124 /// Provides [Hasher] methods to hash all of the primitive types.
125 ///
126 /// [Hasher]: core::hash::Hasher
127 impl Hasher for AHasher {
128     #[inline]
write_u8(&mut self, i: u8)129     fn write_u8(&mut self, i: u8) {
130         self.update(i as u64);
131     }
132 
133     #[inline]
write_u16(&mut self, i: u16)134     fn write_u16(&mut self, i: u16) {
135         self.update(i as u64);
136     }
137 
138     #[inline]
write_u32(&mut self, i: u32)139     fn write_u32(&mut self, i: u32) {
140         self.update(i as u64);
141     }
142 
143     #[inline]
write_u64(&mut self, i: u64)144     fn write_u64(&mut self, i: u64) {
145         self.update(i as u64);
146     }
147 
148     #[inline]
write_u128(&mut self, i: u128)149     fn write_u128(&mut self, i: u128) {
150         self.large_update(i);
151     }
152 
153     #[inline]
154     #[cfg(any(
155         target_pointer_width = "64",
156         target_pointer_width = "32",
157         target_pointer_width = "16"
158     ))]
write_usize(&mut self, i: usize)159     fn write_usize(&mut self, i: usize) {
160         self.write_u64(i as u64);
161     }
162 
163     #[inline]
164     #[cfg(target_pointer_width = "128")]
write_usize(&mut self, i: usize)165     fn write_usize(&mut self, i: usize) {
166         self.write_u128(i as u128);
167     }
168 
169     #[inline]
170     #[allow(clippy::collapsible_if)]
write(&mut self, input: &[u8])171     fn write(&mut self, input: &[u8]) {
172         let mut data = input;
173         let length = data.len() as u64;
174         //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
175         self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
176         //A 'binary search' on sizes reduces the number of comparisons.
177         if data.len() > 8 {
178             if data.len() > 16 {
179                 let tail = data.read_last_u128();
180                 self.large_update(tail);
181                 while data.len() > 16 {
182                     let (block, rest) = data.read_u128();
183                     self.large_update(block);
184                     data = rest;
185                 }
186             } else {
187                 self.large_update([data.read_u64().0, data.read_last_u64()].convert());
188             }
189         } else {
190             let value = read_small(data);
191             self.large_update(value.convert());
192         }
193     }
194 
195     #[inline]
finish(&self) -> u64196     fn finish(&self) -> u64 {
197         let rot = (self.buffer & 63) as u32;
198         folded_multiply(self.buffer, self.pad).rotate_left(rot)
199     }
200 }
201 
202 #[cfg(feature = "specialize")]
203 pub(crate) struct AHasherU64 {
204     pub(crate) buffer: u64,
205     pub(crate) pad: u64,
206 }
207 
208 /// A specialized hasher for only primitives under 64 bits.
209 #[cfg(feature = "specialize")]
210 impl Hasher for AHasherU64 {
211     #[inline]
finish(&self) -> u64212     fn finish(&self) -> u64 {
213         folded_multiply(self.buffer, self.pad)
214         //self.buffer
215     }
216 
217     #[inline]
write(&mut self, _bytes: &[u8])218     fn write(&mut self, _bytes: &[u8]) {
219         unreachable!("Specialized hasher was called with a different type of object")
220     }
221 
222     #[inline]
write_u8(&mut self, i: u8)223     fn write_u8(&mut self, i: u8) {
224         self.write_u64(i as u64);
225     }
226 
227     #[inline]
write_u16(&mut self, i: u16)228     fn write_u16(&mut self, i: u16) {
229         self.write_u64(i as u64);
230     }
231 
232     #[inline]
write_u32(&mut self, i: u32)233     fn write_u32(&mut self, i: u32) {
234         self.write_u64(i as u64);
235     }
236 
237     #[inline]
write_u64(&mut self, i: u64)238     fn write_u64(&mut self, i: u64) {
239         self.buffer = folded_multiply(i ^ self.buffer, MULTIPLE);
240     }
241 
242     #[inline]
write_u128(&mut self, _i: u128)243     fn write_u128(&mut self, _i: u128) {
244         unreachable!("Specialized hasher was called with a different type of object")
245     }
246 
247     #[inline]
write_usize(&mut self, _i: usize)248     fn write_usize(&mut self, _i: usize) {
249         unreachable!("Specialized hasher was called with a different type of object")
250     }
251 }
252 
253 #[cfg(feature = "specialize")]
254 pub(crate) struct AHasherFixed(pub AHasher);
255 
256 /// A specialized hasher for fixed size primitives larger than 64 bits.
257 #[cfg(feature = "specialize")]
258 impl Hasher for AHasherFixed {
259     #[inline]
finish(&self) -> u64260     fn finish(&self) -> u64 {
261         self.0.short_finish()
262     }
263 
264     #[inline]
write(&mut self, bytes: &[u8])265     fn write(&mut self, bytes: &[u8]) {
266         self.0.write(bytes)
267     }
268 
269     #[inline]
write_u8(&mut self, i: u8)270     fn write_u8(&mut self, i: u8) {
271         self.write_u64(i as u64);
272     }
273 
274     #[inline]
write_u16(&mut self, i: u16)275     fn write_u16(&mut self, i: u16) {
276         self.write_u64(i as u64);
277     }
278 
279     #[inline]
write_u32(&mut self, i: u32)280     fn write_u32(&mut self, i: u32) {
281         self.write_u64(i as u64);
282     }
283 
284     #[inline]
write_u64(&mut self, i: u64)285     fn write_u64(&mut self, i: u64) {
286         self.0.write_u64(i);
287     }
288 
289     #[inline]
write_u128(&mut self, i: u128)290     fn write_u128(&mut self, i: u128) {
291         self.0.write_u128(i);
292     }
293 
294     #[inline]
write_usize(&mut self, i: usize)295     fn write_usize(&mut self, i: usize) {
296         self.0.write_usize(i);
297     }
298 }
299 
300 #[cfg(feature = "specialize")]
301 pub(crate) struct AHasherStr(pub AHasher);
302 
303 /// A specialized hasher for a single string
304 /// Note that the other types don't panic because the hash impl for String tacks on an unneeded call. (As does vec)
305 #[cfg(feature = "specialize")]
306 impl Hasher for AHasherStr {
307     #[inline]
finish(&self) -> u64308     fn finish(&self) -> u64 {
309         self.0.finish()
310     }
311 
312     #[inline]
write(&mut self, bytes: &[u8])313     fn write(&mut self, bytes: &[u8]) {
314         if bytes.len() > 8 {
315             self.0.write(bytes)
316         } else {
317             let value = read_small(bytes);
318             self.0.buffer = folded_multiply(value[0] ^ self.0.buffer, value[1] ^ self.0.extra_keys[1]);
319             self.0.pad = self.0.pad.wrapping_add(bytes.len() as u64);
320         }
321     }
322 
323     #[inline]
write_u8(&mut self, _i: u8)324     fn write_u8(&mut self, _i: u8) {}
325 
326     #[inline]
write_u16(&mut self, _i: u16)327     fn write_u16(&mut self, _i: u16) {}
328 
329     #[inline]
write_u32(&mut self, _i: u32)330     fn write_u32(&mut self, _i: u32) {}
331 
332     #[inline]
write_u64(&mut self, _i: u64)333     fn write_u64(&mut self, _i: u64) {}
334 
335     #[inline]
write_u128(&mut self, _i: u128)336     fn write_u128(&mut self, _i: u128) {}
337 
338     #[inline]
write_usize(&mut self, _i: usize)339     fn write_usize(&mut self, _i: usize) {}
340 }
341 
342 #[cfg(test)]
343 mod tests {
344     use crate::fallback_hash::*;
345 
346     #[test]
test_hash()347     fn test_hash() {
348         let mut hasher = AHasher::new_with_keys(0, 0);
349         let value: u64 = 1 << 32;
350         hasher.update(value);
351         let result = hasher.buffer;
352         let mut hasher = AHasher::new_with_keys(0, 0);
353         let value2: u64 = 1;
354         hasher.update(value2);
355         let result2 = hasher.buffer;
356         let result: [u8; 8] = result.convert();
357         let result2: [u8; 8] = result2.convert();
358         assert_ne!(hex::encode(result), hex::encode(result2));
359     }
360 
361     #[test]
test_conversion()362     fn test_conversion() {
363         let input: &[u8] = "dddddddd".as_bytes();
364         let bytes: u64 = as_array!(input, 8).convert();
365         assert_eq!(bytes, 0x6464646464646464);
366     }
367 }
368