xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/neon-p5.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 4 == 0
7$assert ELEMENTS_TILE >= 4
8$SIMD_TILE = ELEMENTS_TILE // 4
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
11#include <assert.h>
12
13#include <arm_neon.h>
14
15#include <xnnpack/common.h>
16#include <xnnpack/raddstoreexpminusmax.h>
17
18
19$PARAMS_STRUCT = "neonfma_rr1_p5" if FMA else "neon_rr2_p5"
20void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
21    size_t elements,
22    const float* input,
23    const float* max,
24    float* output,
25    float* sum,
26    const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
27{
28  assert(elements % sizeof(float) == 0);
29
30  const float32x4_t vi_max = vld1q_dup_f32(max);
31  const float32x4_t vlog2e = vld1q_dup_f32(&params->${PARAMS_STRUCT}.log2e);
32  const float32x4_t vmagic_bias = vld1q_dup_f32(&params->${PARAMS_STRUCT}.magic_bias);
33  $if FMA:
34    const float32x4_t vminus_ln2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2);
35  $else:
36    const float32x4_t vminus_ln2_hi = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_hi);
37    const float32x4_t vminus_ln2_lo = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_lo);
38  const float32x4_t vc5 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c5);
39  const float32x4_t vc4 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c4);
40  const float32x4_t vc3 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c3);
41  const float32x4_t vc2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c2);
42  const float32x4_t vc1 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c1);
43  const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->${PARAMS_STRUCT}.denorm_cutoff);
44
45  $if ELEMENTS_TILE > 4:
46    $for K in range(ACCUMULATORS):
47      float32x4_t vacc${K} = vmovq_n_f32(0.0f);
48    for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
49      $for N in range(0, ELEMENTS_TILE, 4):
50        const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4;
51
52      $for N in range(0, ELEMENTS_TILE, 4):
53        const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max);
54
55      $for N in range(0, ELEMENTS_TILE, 4):
56        float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e);
57
58      $for N in range(0, ELEMENTS_TILE, 4):
59        const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 23));
60
61      $for N in range(0, ELEMENTS_TILE, 4):
62        vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
63
64      $if FMA:
65        $for N in range(0, ELEMENTS_TILE, 4):
66          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2);
67      $else:
68        $for N in range(0, ELEMENTS_TILE, 4):
69          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi);
70
71        $for N in range(0, ELEMENTS_TILE, 4):
72          vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo);
73
74      $for N in range(0, ELEMENTS_TILE, 4):
75        float32x4_t vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc4, vc5, vt${ABC[N:N+4]});
76
77      $for N in range(0, ELEMENTS_TILE, 4):
78        vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc3, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
79
80      $for N in range(0, ELEMENTS_TILE, 4):
81        vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc2, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
82
83      $for N in range(0, ELEMENTS_TILE, 4):
84        vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc1, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
85
86      $for N in range(0, ELEMENTS_TILE, 4):
87        vt${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
88
89      $for N in range(0, ELEMENTS_TILE, 4):
90        float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
91
92      $for N in range(0, ELEMENTS_TILE, 4):
93        vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
94
95      $for N in range(0, ELEMENTS_TILE, 4):
96        vst1q_f32(output, vf${ABC[N:N+4]}); output += 4;
97
98      $for N in range(0, ELEMENTS_TILE, 4):
99        vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
100    }
101    $if ACCUMULATORS > 1:
102      $ACC_SLICE = 1
103      $while ACC_SLICE < ACCUMULATORS:
104        $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
105          $if A + ACC_SLICE < ACCUMULATORS:
106            vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE});
107        $ACC_SLICE *= 2
108
109    float32x4_t vacc = vacc0;
110  $else:
111    float32x4_t vacc = vmovq_n_f32(0.0f);
112  for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
113    const float32x4_t vi = vld1q_f32(input); input += 4;
114
115    const float32x4_t vx = vsubq_f32(vi, vi_max);
116
117    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
118
119    const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
120
121    vn = vsubq_f32(vn, vmagic_bias);
122
123    $if FMA:
124      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
125    $else:
126      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
127      vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
128
129    float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
130    vp = ${VMULADDQ_F32}(vc3, vp, vt);
131    vp = ${VMULADDQ_F32}(vc2, vp, vt);
132    vp = ${VMULADDQ_F32}(vc1, vp, vt);
133
134    vt = vmulq_f32(vt, vs);
135    float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt);
136
137    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
138
139    vst1q_f32(output, vf); output += 4;
140
141    vacc = vaddq_f32(vacc, vf);
142  }
143#if XNN_ARCH_ARM64
144  float vacc_lo = vaddvq_f32(vacc);
145#else
146  float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
147#endif
148  if (elements != 0) {
149    assert(elements >= 1 * sizeof(float));
150    assert(elements <= 3 * sizeof(float));
151    const float32x4_t vi = vld1q_f32(input); input += 4;
152
153    const float32x4_t vx = vsubq_f32(vi, vi_max);
154
155    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
156
157    const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
158
159    vn = vsubq_f32(vn, vmagic_bias);
160
161    $if FMA:
162      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
163    $else:
164      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
165      vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
166
167    float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
168    vp = ${VMULADDQ_F32}(vc3, vp, vt);
169    vp = ${VMULADDQ_F32}(vc2, vp, vt);
170    vp = ${VMULADDQ_F32}(vc1, vp, vt);
171
172    vt = vmulq_f32(vt, vs);
173    float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt);
174
175    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
176
177    float32x2_t vf_lo = vget_low_f32(vf);
178    if (elements & (2 * sizeof(float))) {
179      vst1_f32(output, vf_lo); output += 2;
180
181      #if XNN_ARCH_ARM64
182        vacc_lo += vaddv_f32(vf_lo);
183      #else
184        vacc_lo = vadd_f32(vacc_lo, vf_lo);
185      #endif
186
187      vf_lo = vget_high_f32(vf);
188    }
189    if (elements & (1 * sizeof(float))) {
190      vst1_lane_f32(output, vf_lo, 0);
191
192      #if XNN_ARCH_ARM64
193        vacc_lo += vget_lane_f32(vf_lo, 0);
194      #else
195        vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
196      #endif
197    }
198  }
199#if XNN_ARCH_ARM64
200  *sum = vacc_lo;
201#else
202  vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
203#endif
204}
205