xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 4 == 0
7$assert ELEMENTS_TILE >= 4
8$SIMD_TILE = ELEMENTS_TILE // 4
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
11#include <assert.h>
12
13#include <arm_neon.h>
14
15#include <xnnpack/common.h>
16#include <xnnpack/raddstoreexpminusmax.h>
17
18
19extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
20
21$PARAMS_STRUCT = "neonfma_rr1_lut64_p2" if FMA else "neon_rr2_lut64_p2"
22void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_lut64_p2_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
23    size_t elements,
24    const float* input,
25    const float* max,
26    float* output,
27    float* sum,
28    const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
29{
30  assert(elements % sizeof(float) == 0);
31
32  const float32x4_t vi_max = vld1q_dup_f32(max);
33  const float32x4_t vlog2e = vld1q_dup_f32(&params->${PARAMS_STRUCT}.log2e);
34  const float32x4_t vmagic_bias = vld1q_dup_f32(&params->${PARAMS_STRUCT}.magic_bias);
35  const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
36  $if FMA:
37    const float32x4_t vminus_ln2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2);
38  $else:
39    const float32x4_t vminus_ln2_hi = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_hi);
40    const float32x4_t vminus_ln2_lo = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_lo);
41  const float32x4_t vc2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c2);
42  const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->${PARAMS_STRUCT}.denorm_cutoff);
43
44  $if ELEMENTS_TILE > 4:
45    $for K in range(ACCUMULATORS):
46      float32x4_t vacc${K} = vmovq_n_f32(0.0f);
47    for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
48      $for N in range(0, ELEMENTS_TILE, 4):
49        const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4;
50
51      $for N in range(0, ELEMENTS_TILE, 4):
52        const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max);
53
54      $for N in range(0, ELEMENTS_TILE, 4):
55        float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e);
56
57      $for N in range(0, ELEMENTS_TILE, 4):
58        const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vmovq_n_s32(INT32_C(0x3F))), 17);
59
60      $for N in range(0, ELEMENTS_TILE, 4):
61        const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask));
62        const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0);
63        const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1);
64
65      $for N in range(0, ELEMENTS_TILE, 4):
66        float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N:N+2]}]);
67        float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N+2:N+4]}]);
68
69      $for N in range(0, ELEMENTS_TILE, 4):
70        vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1);
71        vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1);
72        const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]});
73
74      $for N in range(0, ELEMENTS_TILE, 4):
75        const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]}));
76
77      $for N in range(0, ELEMENTS_TILE, 4):
78        vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
79
80      $if FMA:
81        $for N in range(0, ELEMENTS_TILE, 4):
82          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2);
83      $else:
84        $for N in range(0, ELEMENTS_TILE, 4):
85          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi);
86
87        $for N in range(0, ELEMENTS_TILE, 4):
88          vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo);
89
90      $for N in range(0, ELEMENTS_TILE, 4):
91        float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc2);
92
93      $for N in range(0, ELEMENTS_TILE, 4):
94        vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
95
96      $for N in range(0, ELEMENTS_TILE, 4):
97        float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]});
98
99      $for N in range(0, ELEMENTS_TILE, 4):
100        vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
101
102      $for N in range(0, ELEMENTS_TILE, 4):
103        vst1q_f32(output, vf${ABC[N:N+4]}); output += 4;
104
105      $for N in range(0, ELEMENTS_TILE, 4):
106        vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
107    }
108    $if ACCUMULATORS > 1:
109      $ACC_SLICE = 1
110      $while ACC_SLICE < ACCUMULATORS:
111        $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
112          $if A + ACC_SLICE < ACCUMULATORS:
113            vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE});
114        $ACC_SLICE *= 2
115
116    float32x4_t vacc = vacc0;
117  $else:
118    float32x4_t vacc = vmovq_n_f32(0.0f);
119  for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
120    const float32x4_t vi = vld1q_f32(input); input += 4;
121
122    const float32x4_t vx = vsubq_f32(vi, vi_max);
123
124    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
125
126    const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
127
128    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
129    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
130    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
131    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
132    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
133    vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
134    vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
135    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
136    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
137
138    vn = vsubq_f32(vn, vmagic_bias);
139
140    $if FMA:
141      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
142    $else:
143      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
144      vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
145
146    float32x4_t vp = vmulq_f32(vt, vc2);
147    vp = ${VMULADDQ_F32}(vt, vt, vp);
148
149    float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp);
150
151    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
152
153    vst1q_f32(output, vf); output += 4;
154
155    vacc = vaddq_f32(vacc, vf);
156  }
157#if XNN_ARCH_ARM64
158  float vacc_lo = vaddvq_f32(vacc);
159#else
160  float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
161#endif
162  if (elements != 0) {
163    assert(elements >= 1 * sizeof(float));
164    assert(elements <= 3 * sizeof(float));
165    const float32x4_t vi = vld1q_f32(input); input += 4;
166
167    const float32x4_t vx = vsubq_f32(vi, vi_max);
168
169    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
170
171    const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
172
173    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
174    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
175    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
176    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
177    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
178    vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
179    vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
180    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
181    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
182
183    vn = vsubq_f32(vn, vmagic_bias);
184
185    $if FMA:
186      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
187    $else:
188      float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
189      vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
190
191    float32x4_t vp = vmulq_f32(vt, vc2);
192    vp = ${VMULADDQ_F32}(vt, vt, vp);
193
194    float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp);
195
196    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
197
198    float32x2_t vf_lo = vget_low_f32(vf);
199    if (elements & (2 * sizeof(float))) {
200      vst1_f32(output, vf_lo); output += 2;
201
202      #if XNN_ARCH_ARM64
203        vacc_lo += vaddv_f32(vf_lo);
204      #else
205        vacc_lo = vadd_f32(vacc_lo, vf_lo);
206      #endif
207
208      vf_lo = vget_high_f32(vf);
209    }
210    if (elements & (1 * sizeof(float))) {
211      vst1_lane_f32(output, vf_lo, 0);
212
213      #if XNN_ARCH_ARM64
214        vacc_lo += vget_lane_f32(vf_lo, 0);
215      #else
216        vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
217      #endif
218    }
219  }
220#if XNN_ARCH_ARM64
221  *sum = vacc_lo;
222#else
223  vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
224#endif
225}
226