1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8(
19 size_t elements,
20 const float* input,
21 const float* max,
22 float* output,
23 float* sum,
24 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26 assert(elements % sizeof(float) == 0);
27
28 const v128_t vi_max = wasm_v128_load32_splat(max);
29 const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30 const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31 const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32 const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33 const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34 const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35 const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36 const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37 const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38 const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39
40 v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
42 // Load 8 (2x4) inputs at a time.
43 const v128_t vi0123 = wasm_v128_load(input);
44 const v128_t vi4567 = wasm_v128_load(input + 4);
45 input += 8;
46
47 // Subtract maximum input x := i - i_max. This implies x <= 0.
48 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
49 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
50
51 // Compute reduced argument elements := round(x / log(2)).
52 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
53 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
54
55 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
56 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
57 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
58 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
59
60 // Subtract the large number back to get final elements := round(x / log(2)).
61 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
62 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
63
64 // Compute reduced argument t := x - elements * log(2).
65 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
66 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
67 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
68
69 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
70 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
71
72 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
73 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
74 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
75
76 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
77 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
78
79 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
80 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
81
82 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
83 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
84
85 // Reconstruct the final f value:
86 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
87 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
88 // = s + (t * s) * p
89 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
90 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
91
92 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
93 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
94
95 // For inputs below zero cutoff, replace output with +0.0f.
96 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
98 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
99
100 // Store 8 (2x4) outputs at a time.
101 wasm_v128_store(output, vf0123);
102 wasm_v128_store(output + 4, vf4567);
103 output += 8;
104
105 // Accumulate computed exponents.
106 vacc0 = wasm_f32x4_add(vacc0, vf0123);
107 vacc0 = wasm_f32x4_add(vacc0, vf4567);
108 }
109
110 v128_t vacc = vacc0;
111 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
112 // Load 4 inputs at a time.
113 const v128_t vi = wasm_v128_load(input);
114 input += 4;
115
116 // Subtract maximum input x := i - i_max. This implies x <= 0.
117 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
118
119 // Compute reduced argument elements := round(x / log(2)).
120 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
121
122 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
123 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
124 const v128_t vs = wasm_i32x4_shl(vn, 23);
125
126 // Subtract the large number back to get final elements := round(x / log(2)).
127 vn = wasm_f32x4_sub(vn, vmagic_bias);
128
129 // Compute reduced argument t := x - elements * log(2).
130 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
131 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
132 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
133
134 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
135 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
136 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
137 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
138 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
139
140 // Reconstruct the final f value:
141 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
142 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
143 // = s + (t * s) * p
144 vt = wasm_f32x4_mul(vt, vs);
145 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
146
147 // For inputs below zero cutoff, replace output with +0.0f.
148 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
150
151 // Store 4 outputs at a time.
152 wasm_v128_store(output, vf);
153 output += 4;
154
155 // Accumulate computed exponents.
156 vacc = wasm_f32x4_add(vacc, vf);
157 }
158 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
159 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
160 if (elements != 0) {
161 assert(elements >= 1 * sizeof(float));
162 assert(elements <= 3 * sizeof(float));
163 // Load 4 inputs at a time.
164 const v128_t vi = wasm_v128_load(input);
165
166 // Subtract maximum input x := i - i_max. This implies x <= 0.
167 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
168
169 // Compute reduced argument elements := round(x / log(2)).
170 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
171
172 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
173 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
174 const v128_t vs = wasm_i32x4_shl(vn, 23);
175
176 // Subtract the large number back to get final elements := round(x / log(2)).
177 vn = wasm_f32x4_sub(vn, vmagic_bias);
178
179 // Compute reduced argument t := x - elements * log(2).
180 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
181 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
182 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
183
184 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
185 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
186 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
187 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
188 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
189
190 // Reconstruct the final f value:
191 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
192 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193 // = s + (t * s) * p
194 vt = wasm_f32x4_mul(vt, vs);
195 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
196
197 // For inputs below zero cutoff, replace output with +0.0f.
198 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
199 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
200
201 if (elements & (2 * sizeof(float))) {
202 // Store and accumulate 2 outputs at a time.
203 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
204 output[0] = vf0;
205 vsum += vf0;
206
207 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
208 output[1] = vf1;
209 vsum += vf1;
210
211 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
212 output += 2;
213 }
214 if (elements & (1 * sizeof(float))) {
215 // Store 1 output at a time.
216 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
217 *output = vf0;
218 vsum += vf0;
219 }
220 }
221 // Reduce 4 elements in the SIMD register
222 *sum = vsum;
223 }
224