xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/wasmsimd-rr2-p5-x8.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const v128_t vi_max = wasm_v128_load32_splat(max);
29   const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30   const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31   const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32   const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33   const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34   const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35   const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36   const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37   const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38   const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39 
40   v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
42     // Load 8 (2x4) inputs at a time.
43     const v128_t vi0123 = wasm_v128_load(input);
44     const v128_t vi4567 = wasm_v128_load(input + 4);
45     input += 8;
46 
47     // Subtract maximum input x := i - i_max. This implies x <= 0.
48     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
49     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
50 
51     // Compute reduced argument elements := round(x / log(2)).
52     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
53     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
54 
55     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
56     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
57     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
58     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
59 
60     // Subtract the large number back to get final elements := round(x / log(2)).
61     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
62     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
63 
64     // Compute reduced argument t := x - elements * log(2).
65     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
66     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
67     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
68 
69     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
70     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
71 
72     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
73     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
74     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
75 
76     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
77     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
78 
79     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
80     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
81 
82     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
83     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
84 
85     // Reconstruct the final f value:
86     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
87     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
88     //     = s + (t * s) * p
89     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
90     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
91 
92     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
93     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
94 
95     // For inputs below zero cutoff, replace output with +0.0f.
96     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
98     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
99 
100     // Store 8 (2x4) outputs at a time.
101     wasm_v128_store(output, vf0123);
102     wasm_v128_store(output + 4, vf4567);
103     output += 8;
104 
105     // Accumulate computed exponents.
106     vacc0 = wasm_f32x4_add(vacc0, vf0123);
107     vacc0 = wasm_f32x4_add(vacc0, vf4567);
108   }
109 
110   v128_t vacc = vacc0;
111   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
112     // Load 4 inputs at a time.
113     const v128_t vi = wasm_v128_load(input);
114     input += 4;
115 
116     // Subtract maximum input x := i - i_max. This implies x <= 0.
117     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
118 
119     // Compute reduced argument elements := round(x / log(2)).
120     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
121 
122     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
123     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
124     const v128_t vs = wasm_i32x4_shl(vn, 23);
125 
126     // Subtract the large number back to get final elements := round(x / log(2)).
127     vn = wasm_f32x4_sub(vn, vmagic_bias);
128 
129     // Compute reduced argument t := x - elements * log(2).
130     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
131     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
132     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
133 
134     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
135     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
136     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
137     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
138     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
139 
140     // Reconstruct the final f value:
141     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
142     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
143     //     = s + (t * s) * p
144     vt = wasm_f32x4_mul(vt, vs);
145     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
146 
147     // For inputs below zero cutoff, replace output with +0.0f.
148     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
150 
151     // Store 4 outputs at a time.
152     wasm_v128_store(output, vf);
153     output += 4;
154 
155     // Accumulate computed exponents.
156     vacc = wasm_f32x4_add(vacc, vf);
157   }
158   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
159   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
160   if (elements != 0) {
161     assert(elements >= 1 * sizeof(float));
162     assert(elements <= 3 * sizeof(float));
163     // Load 4 inputs at a time.
164     const v128_t vi = wasm_v128_load(input);
165 
166     // Subtract maximum input x := i - i_max. This implies x <= 0.
167     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
168 
169     // Compute reduced argument elements := round(x / log(2)).
170     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
171 
172     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
173     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
174     const v128_t vs = wasm_i32x4_shl(vn, 23);
175 
176     // Subtract the large number back to get final elements := round(x / log(2)).
177     vn = wasm_f32x4_sub(vn, vmagic_bias);
178 
179     // Compute reduced argument t := x - elements * log(2).
180     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
181     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
182     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
183 
184     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
185     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
186     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
187     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
188     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
189 
190     // Reconstruct the final f value:
191     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
192     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193     //     = s + (t * s) * p
194     vt = wasm_f32x4_mul(vt, vs);
195     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
196 
197     // For inputs below zero cutoff, replace output with +0.0f.
198     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
199     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
200 
201     if (elements & (2 * sizeof(float))) {
202       // Store and accumulate 2 outputs at a time.
203       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
204       output[0] = vf0;
205       vsum += vf0;
206 
207       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
208       output[1] = vf1;
209       vsum += vf1;
210 
211       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
212       output += 2;
213     }
214     if (elements & (1 * sizeof(float))) {
215       // Store 1 output at a time.
216       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
217       *output = vf0;
218       vsum += vf0;
219     }
220   }
221   // Reduce 4 elements in the SIMD register
222   *sum = vsum;
223 }
224