xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/wasmsimd-rr2-p5-x4.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x4(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x4(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const v128_t vi_max = wasm_v128_load32_splat(max);
29   const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30   const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31   const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32   const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33   const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34   const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35   const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36   const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37   const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38   const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39 
40   v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
42     // Load 4 (1x4) inputs at a time.
43     const v128_t vi0123 = wasm_v128_load(input);
44     input += 4;
45 
46     // Subtract maximum input x := i - i_max. This implies x <= 0.
47     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
48 
49     // Compute reduced argument elements := round(x / log(2)).
50     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
51 
52     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
53     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
54     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
55 
56     // Subtract the large number back to get final elements := round(x / log(2)).
57     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
58 
59     // Compute reduced argument t := x - elements * log(2).
60     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
61     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
62 
63     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
64 
65     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
66     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
67 
68     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
69 
70     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
71 
72     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
73 
74     // Reconstruct the final f value:
75     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
76     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
77     //     = s + (t * s) * p
78     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
79 
80     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
81 
82     // For inputs below zero cutoff, replace output with +0.0f.
83     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
84     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
85 
86     // Store 4 (1x4) outputs at a time.
87     wasm_v128_store(output, vf0123);
88     output += 4;
89 
90     // Accumulate computed exponents.
91     vacc0 = wasm_f32x4_add(vacc0, vf0123);
92   }
93 
94   v128_t vacc = vacc0;
95   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
96     // Load 4 inputs at a time.
97     const v128_t vi = wasm_v128_load(input);
98     input += 4;
99 
100     // Subtract maximum input x := i - i_max. This implies x <= 0.
101     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
102 
103     // Compute reduced argument elements := round(x / log(2)).
104     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
105 
106     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
107     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
108     const v128_t vs = wasm_i32x4_shl(vn, 23);
109 
110     // Subtract the large number back to get final elements := round(x / log(2)).
111     vn = wasm_f32x4_sub(vn, vmagic_bias);
112 
113     // Compute reduced argument t := x - elements * log(2).
114     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
115     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
116     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
117 
118     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
119     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
120     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
121     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
122     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
123 
124     // Reconstruct the final f value:
125     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
126     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
127     //     = s + (t * s) * p
128     vt = wasm_f32x4_mul(vt, vs);
129     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
130 
131     // For inputs below zero cutoff, replace output with +0.0f.
132     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
133     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
134 
135     // Store 4 outputs at a time.
136     wasm_v128_store(output, vf);
137     output += 4;
138 
139     // Accumulate computed exponents.
140     vacc = wasm_f32x4_add(vacc, vf);
141   }
142   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
143   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
144   if (elements != 0) {
145     assert(elements >= 1 * sizeof(float));
146     assert(elements <= 3 * sizeof(float));
147     // Load 4 inputs at a time.
148     const v128_t vi = wasm_v128_load(input);
149 
150     // Subtract maximum input x := i - i_max. This implies x <= 0.
151     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
152 
153     // Compute reduced argument elements := round(x / log(2)).
154     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
155 
156     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
157     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
158     const v128_t vs = wasm_i32x4_shl(vn, 23);
159 
160     // Subtract the large number back to get final elements := round(x / log(2)).
161     vn = wasm_f32x4_sub(vn, vmagic_bias);
162 
163     // Compute reduced argument t := x - elements * log(2).
164     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
165     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
166     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
167 
168     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
169     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
170     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
171     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
172     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
173 
174     // Reconstruct the final f value:
175     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
176     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
177     //     = s + (t * s) * p
178     vt = wasm_f32x4_mul(vt, vs);
179     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
180 
181     // For inputs below zero cutoff, replace output with +0.0f.
182     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
183     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
184 
185     if (elements & (2 * sizeof(float))) {
186       // Store and accumulate 2 outputs at a time.
187       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
188       output[0] = vf0;
189       vsum += vf0;
190 
191       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
192       output[1] = vf1;
193       vsum += vf1;
194 
195       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
196       output += 2;
197     }
198     if (elements & (1 * sizeof(float))) {
199       // Store 1 output at a time.
200       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
201       *output = vf0;
202       vsum += vf0;
203     }
204   }
205   // Reduce 4 elements in the SIMD register
206   *sum = vsum;
207 }
208