1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x4(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x4(
19 size_t elements,
20 const float* input,
21 const float* max,
22 float* output,
23 float* sum,
24 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26 assert(elements % sizeof(float) == 0);
27
28 const v128_t vi_max = wasm_v128_load32_splat(max);
29 const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30 const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31 const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32 const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33 const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34 const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35 const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36 const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37 const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38 const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39
40 v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
42 // Load 4 (1x4) inputs at a time.
43 const v128_t vi0123 = wasm_v128_load(input);
44 input += 4;
45
46 // Subtract maximum input x := i - i_max. This implies x <= 0.
47 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
48
49 // Compute reduced argument elements := round(x / log(2)).
50 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
51
52 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
53 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
54 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
55
56 // Subtract the large number back to get final elements := round(x / log(2)).
57 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
58
59 // Compute reduced argument t := x - elements * log(2).
60 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
61 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
62
63 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
64
65 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
66 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
67
68 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
69
70 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
71
72 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
73
74 // Reconstruct the final f value:
75 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
76 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
77 // = s + (t * s) * p
78 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
79
80 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
81
82 // For inputs below zero cutoff, replace output with +0.0f.
83 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
84 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
85
86 // Store 4 (1x4) outputs at a time.
87 wasm_v128_store(output, vf0123);
88 output += 4;
89
90 // Accumulate computed exponents.
91 vacc0 = wasm_f32x4_add(vacc0, vf0123);
92 }
93
94 v128_t vacc = vacc0;
95 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
96 // Load 4 inputs at a time.
97 const v128_t vi = wasm_v128_load(input);
98 input += 4;
99
100 // Subtract maximum input x := i - i_max. This implies x <= 0.
101 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
102
103 // Compute reduced argument elements := round(x / log(2)).
104 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
105
106 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
107 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
108 const v128_t vs = wasm_i32x4_shl(vn, 23);
109
110 // Subtract the large number back to get final elements := round(x / log(2)).
111 vn = wasm_f32x4_sub(vn, vmagic_bias);
112
113 // Compute reduced argument t := x - elements * log(2).
114 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
115 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
116 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
117
118 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
119 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
120 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
121 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
122 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
123
124 // Reconstruct the final f value:
125 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
126 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
127 // = s + (t * s) * p
128 vt = wasm_f32x4_mul(vt, vs);
129 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
130
131 // For inputs below zero cutoff, replace output with +0.0f.
132 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
133 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
134
135 // Store 4 outputs at a time.
136 wasm_v128_store(output, vf);
137 output += 4;
138
139 // Accumulate computed exponents.
140 vacc = wasm_f32x4_add(vacc, vf);
141 }
142 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
143 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
144 if (elements != 0) {
145 assert(elements >= 1 * sizeof(float));
146 assert(elements <= 3 * sizeof(float));
147 // Load 4 inputs at a time.
148 const v128_t vi = wasm_v128_load(input);
149
150 // Subtract maximum input x := i - i_max. This implies x <= 0.
151 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
152
153 // Compute reduced argument elements := round(x / log(2)).
154 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
155
156 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
157 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
158 const v128_t vs = wasm_i32x4_shl(vn, 23);
159
160 // Subtract the large number back to get final elements := round(x / log(2)).
161 vn = wasm_f32x4_sub(vn, vmagic_bias);
162
163 // Compute reduced argument t := x - elements * log(2).
164 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
165 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
166 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
167
168 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
169 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
170 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
171 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
172 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
173
174 // Reconstruct the final f value:
175 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
176 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
177 // = s + (t * s) * p
178 vt = wasm_f32x4_mul(vt, vs);
179 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
180
181 // For inputs below zero cutoff, replace output with +0.0f.
182 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
183 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
184
185 if (elements & (2 * sizeof(float))) {
186 // Store and accumulate 2 outputs at a time.
187 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
188 output[0] = vf0;
189 vsum += vf0;
190
191 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
192 output[1] = vf1;
193 vsum += vf1;
194
195 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
196 output += 2;
197 }
198 if (elements & (1 * sizeof(float))) {
199 // Store 1 output at a time.
200 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
201 *output = vf0;
202 vsum += vf0;
203 }
204 }
205 // Reduce 4 elements in the SIMD register
206 *sum = vsum;
207 }
208