xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/wasmsimd-rr2-p5-x12-acc3.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x12_acc3(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x12_acc3(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const v128_t vi_max = wasm_v128_load32_splat(max);
29   const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30   const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31   const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32   const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33   const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34   const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35   const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36   const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37   const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38   const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39 
40   v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41   v128_t vacc1 = vacc0;
42   v128_t vacc2 = vacc0;
43   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
44     // Load 12 (3x4) inputs at a time.
45     const v128_t vi0123 = wasm_v128_load(input);
46     const v128_t vi4567 = wasm_v128_load(input + 4);
47     const v128_t vi89AB = wasm_v128_load(input + 8);
48     input += 12;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
52     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
53     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
57     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
58     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
59 
60     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
61     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
62     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
63     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
64     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
65 
66     // Subtract the large number back to get final elements := round(x / log(2)).
67     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
68     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
69     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
70 
71     // Compute reduced argument t := x - elements * log(2).
72     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
73     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
74     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
75     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
76 
77     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
78     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
79     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
80 
81     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
82     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
83     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
84     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
85 
86     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
87     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
88     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
89 
90     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
91     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
92     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
93 
94     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
95     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
96     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
97 
98     // Reconstruct the final f value:
99     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
100     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
101     //     = s + (t * s) * p
102     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
103     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
104     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
105 
106     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
107     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
108     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
109 
110     // For inputs below zero cutoff, replace output with +0.0f.
111     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
112     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
113     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
114     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
115 
116     // Store 12 (3x4) outputs at a time.
117     wasm_v128_store(output, vf0123);
118     wasm_v128_store(output + 4, vf4567);
119     wasm_v128_store(output + 8, vf89AB);
120     output += 12;
121 
122     // Accumulate computed exponents.
123     vacc0 = wasm_f32x4_add(vacc0, vf0123);
124     vacc1 = wasm_f32x4_add(vacc1, vf4567);
125     vacc2 = wasm_f32x4_add(vacc2, vf89AB);
126   }
127   // Add up all accumulators to vacc0
128   vacc0 = wasm_f32x4_add(vacc0, vacc1);
129   vacc0 = wasm_f32x4_add(vacc0, vacc2);
130 
131   v128_t vacc = vacc0;
132   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
133     // Load 4 inputs at a time.
134     const v128_t vi = wasm_v128_load(input);
135     input += 4;
136 
137     // Subtract maximum input x := i - i_max. This implies x <= 0.
138     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
139 
140     // Compute reduced argument elements := round(x / log(2)).
141     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
142 
143     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
144     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
145     const v128_t vs = wasm_i32x4_shl(vn, 23);
146 
147     // Subtract the large number back to get final elements := round(x / log(2)).
148     vn = wasm_f32x4_sub(vn, vmagic_bias);
149 
150     // Compute reduced argument t := x - elements * log(2).
151     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
152     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
153     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
154 
155     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
156     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
157     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
158     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
159     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
160 
161     // Reconstruct the final f value:
162     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
163     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
164     //     = s + (t * s) * p
165     vt = wasm_f32x4_mul(vt, vs);
166     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
167 
168     // For inputs below zero cutoff, replace output with +0.0f.
169     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
170     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
171 
172     // Store 4 outputs at a time.
173     wasm_v128_store(output, vf);
174     output += 4;
175 
176     // Accumulate computed exponents.
177     vacc = wasm_f32x4_add(vacc, vf);
178   }
179   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
180   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
181   if (elements != 0) {
182     assert(elements >= 1 * sizeof(float));
183     assert(elements <= 3 * sizeof(float));
184     // Load 4 inputs at a time.
185     const v128_t vi = wasm_v128_load(input);
186 
187     // Subtract maximum input x := i - i_max. This implies x <= 0.
188     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
189 
190     // Compute reduced argument elements := round(x / log(2)).
191     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
192 
193     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
194     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
195     const v128_t vs = wasm_i32x4_shl(vn, 23);
196 
197     // Subtract the large number back to get final elements := round(x / log(2)).
198     vn = wasm_f32x4_sub(vn, vmagic_bias);
199 
200     // Compute reduced argument t := x - elements * log(2).
201     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
202     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
203     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
204 
205     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
206     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
207     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
208     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
209     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
210 
211     // Reconstruct the final f value:
212     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
213     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
214     //     = s + (t * s) * p
215     vt = wasm_f32x4_mul(vt, vs);
216     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
217 
218     // For inputs below zero cutoff, replace output with +0.0f.
219     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
220     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
221 
222     if (elements & (2 * sizeof(float))) {
223       // Store and accumulate 2 outputs at a time.
224       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
225       output[0] = vf0;
226       vsum += vf0;
227 
228       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
229       output[1] = vf1;
230       vsum += vf1;
231 
232       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
233       output += 2;
234     }
235     if (elements & (1 * sizeof(float))) {
236       // Store 1 output at a time.
237       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
238       *output = vf0;
239       vsum += vf0;
240     }
241   }
242   // Reduce 4 elements in the SIMD register
243   *sum = vsum;
244 }
245