xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/sse2-rr2-p5-x8.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x8(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x8(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m128 vi_max = _mm_load1_ps(max);
29   const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
30   const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
31   const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
32   const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
33   const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
34   const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
35   const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
36   const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
37   const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
38   const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
39 
40   __m128 vacc0 = _mm_setzero_ps();
41   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
42     // Load 8 (2x4) inputs at a time.
43     const __m128 vi0123 = _mm_loadu_ps(input);
44     const __m128 vi4567 = _mm_loadu_ps(input + 4);
45     input += 8;
46 
47     // Subtract maximum input x := i - i_max. This implies x <= 0.
48     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
49     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
50 
51     // Compute reduced argument elements := round(x / log(2)).
52     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
53     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
54 
55     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
56     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
57     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
58     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
59 
60     // Subtract the large number back to get final elements := round(x / log(2)).
61     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
62     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
63 
64     // Compute reduced argument t := x - elements * log(2).
65     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
66     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
67     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
68 
69     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
70     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
71 
72     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
73     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
74     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
75 
76     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
77     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
78 
79     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
80     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
81 
82     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
83     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
84 
85     // Reconstruct the final f value:
86     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
87     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
88     //     = s + (t * s) * p
89     vt0123 = _mm_mul_ps(vt0123, vs0123);
90     vt4567 = _mm_mul_ps(vt4567, vs4567);
91 
92     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
93     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
94 
95     // For inputs below zero cutoff, replace output with +0.0f.
96     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
98     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
99 
100     // Store 8 (2x4) outputs at a time.
101     _mm_storeu_ps(output, vf0123);
102     _mm_storeu_ps(output + 4, vf4567);
103     output += 8;
104 
105     // Accumulate computed exponents.
106     vacc0 = _mm_add_ps(vacc0, vf0123);
107     vacc0 = _mm_add_ps(vacc0, vf4567);
108   }
109 
110   __m128 vacc = vacc0;
111   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
112     // Load 4 inputs at a time.
113     const __m128 vi = _mm_loadu_ps(input);
114     input += 4;
115 
116     // Subtract maximum input x := i - i_max. This implies x <= 0.
117     const __m128 vx = _mm_sub_ps(vi, vi_max);
118 
119     // Compute reduced argument elements := round(x / log(2)).
120     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
121 
122     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
123     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
124     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
125 
126     // Subtract the large number back to get final elements := round(x / log(2)).
127     vn = _mm_sub_ps(vn, vmagic_bias);
128 
129     // Compute reduced argument t := x - elements * log(2).
130     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
131     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
132     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
133 
134     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
135     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
136     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
137     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
138     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
139 
140     // Reconstruct the final f value:
141     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
142     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
143     //     = s + (t * s) * p
144     vt = _mm_mul_ps(vt, vs);
145     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
146 
147     // For inputs below zero cutoff, replace output with +0.0f.
148     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
150 
151     // Store 4 outputs at a time.
152     _mm_storeu_ps(output, vf);
153     output += 4;
154 
155     // Accumulate computed exponents.
156     vacc = _mm_add_ps(vacc, vf);
157   }
158   if (elements != 0) {
159     assert(elements >= 1 * sizeof(float));
160     assert(elements <= 3 * sizeof(float));
161     // Load 4 inputs at a time.
162     const __m128 vi = _mm_loadu_ps(input);
163 
164     // Subtract maximum input x := i - i_max. This implies x <= 0.
165     const __m128 vx = _mm_sub_ps(vi, vi_max);
166 
167     // Compute reduced argument elements := round(x / log(2)).
168     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
169 
170     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
171     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
172     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
173 
174     // Subtract the large number back to get final elements := round(x / log(2)).
175     vn = _mm_sub_ps(vn, vmagic_bias);
176 
177     // Compute reduced argument t := x - elements * log(2).
178     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
179     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
180     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
181 
182     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
183     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
184     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
185     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
186     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
187 
188     // Reconstruct the final f value:
189     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
190     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
191     //     = s + (t * s) * p
192     vt = _mm_mul_ps(vt, vs);
193     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
194 
195     // For inputs below zero cutoff, replace output with +0.0f.
196     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
197     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
198 
199     if (elements & (2 * sizeof(float))) {
200       // Store 2 outputs at a time.
201       _mm_storel_pi((__m64*) output, vf);
202       output += 2;
203 
204       // Accumulate 2 computed exponents.
205       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
206 
207       vf = _mm_movehl_ps(vf, vf);
208     }
209     if (elements & (1 * sizeof(float))) {
210       // Store 1 output at a time.
211       _mm_store_ss(output, vf);
212 
213       // Accumulate 1 computed exponent.
214       vacc = _mm_add_ss(vacc, vf);
215     }
216   }
217   // Reduce 4 elements in the SIMD register
218   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
219   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
220   _mm_store_ss(sum, vacc);
221 }
222