xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/sse2-rr2-p5-x16.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x16(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x16(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m128 vi_max = _mm_load1_ps(max);
29   const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
30   const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
31   const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
32   const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
33   const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
34   const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
35   const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
36   const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
37   const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
38   const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
39 
40   __m128 vacc0 = _mm_setzero_ps();
41   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
42     // Load 16 (4x4) inputs at a time.
43     const __m128 vi0123 = _mm_loadu_ps(input);
44     const __m128 vi4567 = _mm_loadu_ps(input + 4);
45     const __m128 vi89AB = _mm_loadu_ps(input + 8);
46     const __m128 viCDEF = _mm_loadu_ps(input + 12);
47     input += 16;
48 
49     // Subtract maximum input x := i - i_max. This implies x <= 0.
50     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
51     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
52     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
53     const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
57     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
58     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
59     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
60 
61     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
62     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
63     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
64     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
65     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
66     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
67 
68     // Subtract the large number back to get final elements := round(x / log(2)).
69     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
70     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
71     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
72     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
73 
74     // Compute reduced argument t := x - elements * log(2).
75     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
76     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
77     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
78     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
79     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
80 
81     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
82     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
83     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
84     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
85 
86     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
87     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
88     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
89     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
90     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
91 
92     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
93     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
94     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
95     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
96 
97     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
98     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
99     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
100     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
101 
102     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
103     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
104     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
105     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
106 
107     // Reconstruct the final f value:
108     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
109     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
110     //     = s + (t * s) * p
111     vt0123 = _mm_mul_ps(vt0123, vs0123);
112     vt4567 = _mm_mul_ps(vt4567, vs4567);
113     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
114     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
115 
116     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
117     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
118     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
119     __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
120 
121     // For inputs below zero cutoff, replace output with +0.0f.
122     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
123     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
124     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
125     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
126     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
127 
128     // Store 16 (4x4) outputs at a time.
129     _mm_storeu_ps(output, vf0123);
130     _mm_storeu_ps(output + 4, vf4567);
131     _mm_storeu_ps(output + 8, vf89AB);
132     _mm_storeu_ps(output + 12, vfCDEF);
133     output += 16;
134 
135     // Accumulate computed exponents.
136     vacc0 = _mm_add_ps(vacc0, vf0123);
137     vacc0 = _mm_add_ps(vacc0, vf4567);
138     vacc0 = _mm_add_ps(vacc0, vf89AB);
139     vacc0 = _mm_add_ps(vacc0, vfCDEF);
140   }
141 
142   __m128 vacc = vacc0;
143   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
144     // Load 4 inputs at a time.
145     const __m128 vi = _mm_loadu_ps(input);
146     input += 4;
147 
148     // Subtract maximum input x := i - i_max. This implies x <= 0.
149     const __m128 vx = _mm_sub_ps(vi, vi_max);
150 
151     // Compute reduced argument elements := round(x / log(2)).
152     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
153 
154     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
155     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
156     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
157 
158     // Subtract the large number back to get final elements := round(x / log(2)).
159     vn = _mm_sub_ps(vn, vmagic_bias);
160 
161     // Compute reduced argument t := x - elements * log(2).
162     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
163     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
164     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
165 
166     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
167     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
168     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
169     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
170     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
171 
172     // Reconstruct the final f value:
173     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
174     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
175     //     = s + (t * s) * p
176     vt = _mm_mul_ps(vt, vs);
177     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
178 
179     // For inputs below zero cutoff, replace output with +0.0f.
180     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
181     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
182 
183     // Store 4 outputs at a time.
184     _mm_storeu_ps(output, vf);
185     output += 4;
186 
187     // Accumulate computed exponents.
188     vacc = _mm_add_ps(vacc, vf);
189   }
190   if (elements != 0) {
191     assert(elements >= 1 * sizeof(float));
192     assert(elements <= 3 * sizeof(float));
193     // Load 4 inputs at a time.
194     const __m128 vi = _mm_loadu_ps(input);
195 
196     // Subtract maximum input x := i - i_max. This implies x <= 0.
197     const __m128 vx = _mm_sub_ps(vi, vi_max);
198 
199     // Compute reduced argument elements := round(x / log(2)).
200     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
201 
202     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
203     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
204     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
205 
206     // Subtract the large number back to get final elements := round(x / log(2)).
207     vn = _mm_sub_ps(vn, vmagic_bias);
208 
209     // Compute reduced argument t := x - elements * log(2).
210     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
211     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
212     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
213 
214     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
215     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
216     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
217     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
218     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
219 
220     // Reconstruct the final f value:
221     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
222     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
223     //     = s + (t * s) * p
224     vt = _mm_mul_ps(vt, vs);
225     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
226 
227     // For inputs below zero cutoff, replace output with +0.0f.
228     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
229     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
230 
231     if (elements & (2 * sizeof(float))) {
232       // Store 2 outputs at a time.
233       _mm_storel_pi((__m64*) output, vf);
234       output += 2;
235 
236       // Accumulate 2 computed exponents.
237       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
238 
239       vf = _mm_movehl_ps(vf, vf);
240     }
241     if (elements & (1 * sizeof(float))) {
242       // Store 1 output at a time.
243       _mm_store_ss(output, vf);
244 
245       // Accumulate 1 computed exponent.
246       vacc = _mm_add_ss(vacc, vf);
247     }
248   }
249   // Reduce 4 elements in the SIMD register
250   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
251   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
252   _mm_store_ss(sum, vacc);
253 }
254