xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/sse2-rr2-p5-x16-acc4.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x16_acc4(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x16_acc4(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m128 vi_max = _mm_load1_ps(max);
29   const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
30   const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
31   const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
32   const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
33   const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
34   const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
35   const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
36   const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
37   const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
38   const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
39 
40   __m128 vacc0 = _mm_setzero_ps();
41   __m128 vacc1 = _mm_setzero_ps();
42   __m128 vacc2 = _mm_setzero_ps();
43   __m128 vacc3 = _mm_setzero_ps();
44   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
45     // Load 16 (4x4) inputs at a time.
46     const __m128 vi0123 = _mm_loadu_ps(input);
47     const __m128 vi4567 = _mm_loadu_ps(input + 4);
48     const __m128 vi89AB = _mm_loadu_ps(input + 8);
49     const __m128 viCDEF = _mm_loadu_ps(input + 12);
50     input += 16;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
54     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
55     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
56     const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
57 
58     // Compute reduced argument elements := round(x / log(2)).
59     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
60     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
61     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
62     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
63 
64     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
67     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
68     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
69     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
70 
71     // Subtract the large number back to get final elements := round(x / log(2)).
72     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
73     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
74     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
75     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
76 
77     // Compute reduced argument t := x - elements * log(2).
78     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
79     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
80     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
81     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
82     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
83 
84     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
85     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
86     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
87     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
88 
89     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
90     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
91     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
92     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
93     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
94 
95     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
96     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
97     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
98     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
99 
100     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
101     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
102     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
103     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
104 
105     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
106     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
107     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
108     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
109 
110     // Reconstruct the final f value:
111     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
112     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
113     //     = s + (t * s) * p
114     vt0123 = _mm_mul_ps(vt0123, vs0123);
115     vt4567 = _mm_mul_ps(vt4567, vs4567);
116     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
117     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
118 
119     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
120     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
121     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
122     __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
123 
124     // For inputs below zero cutoff, replace output with +0.0f.
125     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
126     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
127     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
128     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
129     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
130 
131     // Store 16 (4x4) outputs at a time.
132     _mm_storeu_ps(output, vf0123);
133     _mm_storeu_ps(output + 4, vf4567);
134     _mm_storeu_ps(output + 8, vf89AB);
135     _mm_storeu_ps(output + 12, vfCDEF);
136     output += 16;
137 
138     // Accumulate computed exponents.
139     vacc0 = _mm_add_ps(vacc0, vf0123);
140     vacc0 = _mm_add_ps(vacc0, vf4567);
141     vacc0 = _mm_add_ps(vacc0, vf89AB);
142     vacc0 = _mm_add_ps(vacc0, vfCDEF);
143   }
144   // Add up all accumulators to vacc0
145   vacc0 = _mm_add_ps(vacc0, vacc1);
146   vacc2 = _mm_add_ps(vacc2, vacc3);
147   vacc0 = _mm_add_ps(vacc0, vacc2);
148 
149   __m128 vacc = vacc0;
150   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
151     // Load 4 inputs at a time.
152     const __m128 vi = _mm_loadu_ps(input);
153     input += 4;
154 
155     // Subtract maximum input x := i - i_max. This implies x <= 0.
156     const __m128 vx = _mm_sub_ps(vi, vi_max);
157 
158     // Compute reduced argument elements := round(x / log(2)).
159     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
160 
161     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
162     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
163     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
164 
165     // Subtract the large number back to get final elements := round(x / log(2)).
166     vn = _mm_sub_ps(vn, vmagic_bias);
167 
168     // Compute reduced argument t := x - elements * log(2).
169     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
170     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
171     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
172 
173     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
174     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
175     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
176     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
177     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
178 
179     // Reconstruct the final f value:
180     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
181     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
182     //     = s + (t * s) * p
183     vt = _mm_mul_ps(vt, vs);
184     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
185 
186     // For inputs below zero cutoff, replace output with +0.0f.
187     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
188     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
189 
190     // Store 4 outputs at a time.
191     _mm_storeu_ps(output, vf);
192     output += 4;
193 
194     // Accumulate computed exponents.
195     vacc = _mm_add_ps(vacc, vf);
196   }
197   if (elements != 0) {
198     assert(elements >= 1 * sizeof(float));
199     assert(elements <= 3 * sizeof(float));
200     // Load 4 inputs at a time.
201     const __m128 vi = _mm_loadu_ps(input);
202 
203     // Subtract maximum input x := i - i_max. This implies x <= 0.
204     const __m128 vx = _mm_sub_ps(vi, vi_max);
205 
206     // Compute reduced argument elements := round(x / log(2)).
207     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
208 
209     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
210     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
211     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
212 
213     // Subtract the large number back to get final elements := round(x / log(2)).
214     vn = _mm_sub_ps(vn, vmagic_bias);
215 
216     // Compute reduced argument t := x - elements * log(2).
217     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
218     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
219     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
220 
221     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
222     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
223     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
224     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
225     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
226 
227     // Reconstruct the final f value:
228     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
229     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
230     //     = s + (t * s) * p
231     vt = _mm_mul_ps(vt, vs);
232     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
233 
234     // For inputs below zero cutoff, replace output with +0.0f.
235     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
236     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
237 
238     if (elements & (2 * sizeof(float))) {
239       // Store 2 outputs at a time.
240       _mm_storel_pi((__m64*) output, vf);
241       output += 2;
242 
243       // Accumulate 2 computed exponents.
244       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
245 
246       vf = _mm_movehl_ps(vf, vf);
247     }
248     if (elements & (1 * sizeof(float))) {
249       // Store 1 output at a time.
250       _mm_store_ss(output, vf);
251 
252       // Accumulate 1 computed exponent.
253       vacc = _mm_add_ss(vacc, vf);
254     }
255   }
256   // Reduce 4 elements in the SIMD register
257   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
258   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
259   _mm_store_ss(sum, vacc);
260 }
261