xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/sse2-rr2-p5-x12-acc2.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x12_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x12_acc2(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m128 vi_max = _mm_load1_ps(max);
29   const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
30   const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
31   const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
32   const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
33   const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
34   const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
35   const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
36   const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
37   const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
38   const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
39 
40   __m128 vacc0 = _mm_setzero_ps();
41   __m128 vacc1 = _mm_setzero_ps();
42   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
43     // Load 12 (3x4) inputs at a time.
44     const __m128 vi0123 = _mm_loadu_ps(input);
45     const __m128 vi4567 = _mm_loadu_ps(input + 4);
46     const __m128 vi89AB = _mm_loadu_ps(input + 8);
47     input += 12;
48 
49     // Subtract maximum input x := i - i_max. This implies x <= 0.
50     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
51     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
52     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
53 
54     // Compute reduced argument elements := round(x / log(2)).
55     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
56     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
57     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
58 
59     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
62     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
63     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
64 
65     // Subtract the large number back to get final elements := round(x / log(2)).
66     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
67     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
68     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
69 
70     // Compute reduced argument t := x - elements * log(2).
71     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
72     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
73     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
74     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
75 
76     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
77     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
78     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
79 
80     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
81     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
82     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
83     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
84 
85     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
86     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
87     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
88 
89     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
90     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
91     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
92 
93     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
94     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
95     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
96 
97     // Reconstruct the final f value:
98     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
99     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
100     //     = s + (t * s) * p
101     vt0123 = _mm_mul_ps(vt0123, vs0123);
102     vt4567 = _mm_mul_ps(vt4567, vs4567);
103     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
104 
105     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
106     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
107     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
108 
109     // For inputs below zero cutoff, replace output with +0.0f.
110     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
111     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
112     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
113     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
114 
115     // Store 12 (3x4) outputs at a time.
116     _mm_storeu_ps(output, vf0123);
117     _mm_storeu_ps(output + 4, vf4567);
118     _mm_storeu_ps(output + 8, vf89AB);
119     output += 12;
120 
121     // Accumulate computed exponents.
122     vacc0 = _mm_add_ps(vacc0, vf0123);
123     vacc0 = _mm_add_ps(vacc0, vf4567);
124     vacc0 = _mm_add_ps(vacc0, vf89AB);
125   }
126   // Add up all accumulators to vacc0
127   vacc0 = _mm_add_ps(vacc0, vacc1);
128 
129   __m128 vacc = vacc0;
130   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
131     // Load 4 inputs at a time.
132     const __m128 vi = _mm_loadu_ps(input);
133     input += 4;
134 
135     // Subtract maximum input x := i - i_max. This implies x <= 0.
136     const __m128 vx = _mm_sub_ps(vi, vi_max);
137 
138     // Compute reduced argument elements := round(x / log(2)).
139     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
140 
141     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
142     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
143     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
144 
145     // Subtract the large number back to get final elements := round(x / log(2)).
146     vn = _mm_sub_ps(vn, vmagic_bias);
147 
148     // Compute reduced argument t := x - elements * log(2).
149     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
150     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
151     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
152 
153     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
154     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
155     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
156     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
157     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
158 
159     // Reconstruct the final f value:
160     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
161     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
162     //     = s + (t * s) * p
163     vt = _mm_mul_ps(vt, vs);
164     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
165 
166     // For inputs below zero cutoff, replace output with +0.0f.
167     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
168     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
169 
170     // Store 4 outputs at a time.
171     _mm_storeu_ps(output, vf);
172     output += 4;
173 
174     // Accumulate computed exponents.
175     vacc = _mm_add_ps(vacc, vf);
176   }
177   if (elements != 0) {
178     assert(elements >= 1 * sizeof(float));
179     assert(elements <= 3 * sizeof(float));
180     // Load 4 inputs at a time.
181     const __m128 vi = _mm_loadu_ps(input);
182 
183     // Subtract maximum input x := i - i_max. This implies x <= 0.
184     const __m128 vx = _mm_sub_ps(vi, vi_max);
185 
186     // Compute reduced argument elements := round(x / log(2)).
187     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
188 
189     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
190     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
191     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
192 
193     // Subtract the large number back to get final elements := round(x / log(2)).
194     vn = _mm_sub_ps(vn, vmagic_bias);
195 
196     // Compute reduced argument t := x - elements * log(2).
197     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
198     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
199     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
200 
201     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
202     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
203     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
204     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
205     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
206 
207     // Reconstruct the final f value:
208     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
209     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
210     //     = s + (t * s) * p
211     vt = _mm_mul_ps(vt, vs);
212     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
213 
214     // For inputs below zero cutoff, replace output with +0.0f.
215     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
216     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
217 
218     if (elements & (2 * sizeof(float))) {
219       // Store 2 outputs at a time.
220       _mm_storel_pi((__m64*) output, vf);
221       output += 2;
222 
223       // Accumulate 2 computed exponents.
224       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
225 
226       vf = _mm_movehl_ps(vf, vf);
227     }
228     if (elements & (1 * sizeof(float))) {
229       // Store 1 output at a time.
230       _mm_store_ss(output, vf);
231 
232       // Accumulate 1 computed exponent.
233       vacc = _mm_add_ss(vacc, vf);
234     }
235   }
236   // Reduce 4 elements in the SIMD register
237   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
238   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
239   _mm_store_ss(sum, vacc);
240 }
241