1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <xnnpack/common.h>
13 #include <xnnpack/math.h>
14 #include <xnnpack/raddstoreexpminusmax.h>
15
16
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x4(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])17 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x4(
18 size_t elements,
19 const float* input,
20 const float* max,
21 float* output,
22 float* sum,
23 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float vi_max = *max;
28 const float vlog2e = params->scalar_rr2_p5.log2e;
29 const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
30 const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
31 const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
32 const float vc5 = params->scalar_rr2_p5.c5;
33 const float vc4 = params->scalar_rr2_p5.c4;
34 const float vc3 = params->scalar_rr2_p5.c3;
35 const float vc2 = params->scalar_rr2_p5.c2;
36 const float vc1 = params->scalar_rr2_p5.c1;
37 const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
38
39 float vacc0 = 0.0f;
40 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
41 // Load 4 inputs at a time.
42 const float vi0 = input[0];
43 const float vi1 = input[1];
44 const float vi2 = input[2];
45 const float vi3 = input[3];
46 input += 4;
47
48 // Subtract maximum input x := i - i_max. This implies x <= 0.
49 const float vx0 = vi0 - vi_max;
50 const float vx1 = vi1 - vi_max;
51 const float vx2 = vi2 - vi_max;
52 const float vx3 = vi3 - vi_max;
53
54 // Compute reduced argument n := round(x / log(2)).
55 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
56 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
57 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
58 // anyway. We fixup the result for such inputs at the very end of the algorithm.
59 float vn0 = vx0 * vlog2e + vmagic_bias;
60 float vn1 = vx1 * vlog2e + vmagic_bias;
61 float vn2 = vx2 * vlog2e + vmagic_bias;
62 float vn3 = vx3 * vlog2e + vmagic_bias;
63
64 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
65 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
66 const float vs0 = uint32_as_float(float_as_uint32(vn0) << 23);
67 const float vs1 = uint32_as_float(float_as_uint32(vn1) << 23);
68 const float vs2 = uint32_as_float(float_as_uint32(vn2) << 23);
69 const float vs3 = uint32_as_float(float_as_uint32(vn3) << 23);
70
71 // Subtract the large number back to get final n := round(x / log(2)).
72 vn0 -= vmagic_bias;
73 vn1 -= vmagic_bias;
74 vn2 -= vmagic_bias;
75 vn3 -= vmagic_bias;
76
77 // Compute reduced argument t := x - n * log(2).
78 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
79 float vt0 = vn0 * vminus_ln2_hi + vx0;
80 float vt1 = vn1 * vminus_ln2_hi + vx1;
81 float vt2 = vn2 * vminus_ln2_hi + vx2;
82 float vt3 = vn3 * vminus_ln2_hi + vx3;
83
84 vt0 = vn0 * vminus_ln2_lo + vt0;
85 vt1 = vn1 * vminus_ln2_lo + vt1;
86 vt2 = vn2 * vminus_ln2_lo + vt2;
87 vt3 = vn3 * vminus_ln2_lo + vt3;
88
89 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
90 float vp0 = vc5 * vt0 + vc4;
91 float vp1 = vc5 * vt1 + vc4;
92 float vp2 = vc5 * vt2 + vc4;
93 float vp3 = vc5 * vt3 + vc4;
94
95 vp0 = vp0 * vt0 + vc3;
96 vp1 = vp1 * vt1 + vc3;
97 vp2 = vp2 * vt2 + vc3;
98 vp3 = vp3 * vt3 + vc3;
99
100 vp0 = vp0 * vt0 + vc2;
101 vp1 = vp1 * vt1 + vc2;
102 vp2 = vp2 * vt2 + vc2;
103 vp3 = vp3 * vt3 + vc2;
104
105 vp0 = vp0 * vt0 + vc1;
106 vp1 = vp1 * vt1 + vc1;
107 vp2 = vp2 * vt2 + vc1;
108 vp3 = vp3 * vt3 + vc1;
109
110 // Reconstruct the final f value:
111 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
112 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
113 // = s + (t * s) * p
114 vt0 *= vs0;
115 vt1 *= vs1;
116 vt2 *= vs2;
117 vt3 *= vs3;
118
119 float vf0 = vt0 * vp0 + vs0;
120 float vf1 = vt1 * vp1 + vs1;
121 float vf2 = vt2 * vp2 + vs2;
122 float vf3 = vt3 * vp3 + vs3;
123
124 // For inputs below denormal cutoff, replace output with +0.0f.
125 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
126 if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
127 vf0 = 0.0f;
128 }
129 if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
130 vf1 = 0.0f;
131 }
132 if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) {
133 vf2 = 0.0f;
134 }
135 if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) {
136 vf3 = 0.0f;
137 }
138
139 // Store 4 outputs at a time.
140 output[0] = vf0;
141 output[1] = vf1;
142 output[2] = vf2;
143 output[3] = vf3;
144 output += 4;
145
146 // Accumulate computed exponents.
147 vacc0 += vf0;
148 vacc0 += vf1;
149 vacc0 += vf2;
150 vacc0 += vf3;
151 }
152
153 float vacc = vacc0;
154 for (; elements >= sizeof(float); elements -= sizeof(float)) {
155 // Load 1 input at a time.
156 const float vi = *input++;
157
158 // Subtract maximum input x := i - i_max. This implies x <= 0.
159 const float vx = vi - vi_max;
160
161 // Compute reduced argument n := round(x / log(2)).
162 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
163 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
164 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
165 // anyway. We fixup the result for such inputs at the very end of the algorithm.
166 float vn = vx * vlog2e + vmagic_bias;
167
168 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
169 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
170 const float vs = uint32_as_float(float_as_uint32(vn) << 23);
171
172 // Subtract the large number back to get final n := round(x / log(2)).
173 vn -= vmagic_bias;
174
175 // Compute reduced argument t := x - n * log(2).
176 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
177 float vt = vn * vminus_ln2_hi + vx;
178 vt = vn * vminus_ln2_lo + vt;
179
180 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
181 float vp = vc5 * vt + vc4;
182 vp = vp * vt + vc3;
183 vp = vp * vt + vc2;
184 vp = vp * vt + vc1;
185
186 // Reconstruct the final f value:
187 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
188 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
189 // = s + (t * s) * p
190 vt *= vs;
191 float vf = vt * vp + vs;
192
193 // For inputs below denormal cutoff, replace output with +0.0f.
194 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
195 if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
196 vf = 0.0f;
197 }
198
199 // Store 1 output at a time.
200 *output++ = vf;
201
202 // Accumulate computed exponents.
203 vacc += vf;
204 }
205 *sum = vacc;
206 }
207