1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <xnnpack/common.h>
13 #include <xnnpack/math.h>
14 #include <xnnpack/raddstoreexpminusmax.h>
15
16
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x4_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])17 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x4_acc2(
18 size_t elements,
19 const float* input,
20 const float* max,
21 float* output,
22 float* sum,
23 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float vi_max = *max;
28 const float vlog2e = params->scalar_rr2_p5.log2e;
29 const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
30 const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
31 const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
32 const float vc5 = params->scalar_rr2_p5.c5;
33 const float vc4 = params->scalar_rr2_p5.c4;
34 const float vc3 = params->scalar_rr2_p5.c3;
35 const float vc2 = params->scalar_rr2_p5.c2;
36 const float vc1 = params->scalar_rr2_p5.c1;
37 const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
38
39 float vacc0 = 0.0f;
40 float vacc1 = 0.0f;
41 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
42 // Load 4 inputs at a time.
43 const float vi0 = input[0];
44 const float vi1 = input[1];
45 const float vi2 = input[2];
46 const float vi3 = input[3];
47 input += 4;
48
49 // Subtract maximum input x := i - i_max. This implies x <= 0.
50 const float vx0 = vi0 - vi_max;
51 const float vx1 = vi1 - vi_max;
52 const float vx2 = vi2 - vi_max;
53 const float vx3 = vi3 - vi_max;
54
55 // Compute reduced argument n := round(x / log(2)).
56 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
57 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
58 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
59 // anyway. We fixup the result for such inputs at the very end of the algorithm.
60 float vn0 = vx0 * vlog2e + vmagic_bias;
61 float vn1 = vx1 * vlog2e + vmagic_bias;
62 float vn2 = vx2 * vlog2e + vmagic_bias;
63 float vn3 = vx3 * vlog2e + vmagic_bias;
64
65 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
66 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
67 const float vs0 = uint32_as_float(float_as_uint32(vn0) << 23);
68 const float vs1 = uint32_as_float(float_as_uint32(vn1) << 23);
69 const float vs2 = uint32_as_float(float_as_uint32(vn2) << 23);
70 const float vs3 = uint32_as_float(float_as_uint32(vn3) << 23);
71
72 // Subtract the large number back to get final n := round(x / log(2)).
73 vn0 -= vmagic_bias;
74 vn1 -= vmagic_bias;
75 vn2 -= vmagic_bias;
76 vn3 -= vmagic_bias;
77
78 // Compute reduced argument t := x - n * log(2).
79 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80 float vt0 = vn0 * vminus_ln2_hi + vx0;
81 float vt1 = vn1 * vminus_ln2_hi + vx1;
82 float vt2 = vn2 * vminus_ln2_hi + vx2;
83 float vt3 = vn3 * vminus_ln2_hi + vx3;
84
85 vt0 = vn0 * vminus_ln2_lo + vt0;
86 vt1 = vn1 * vminus_ln2_lo + vt1;
87 vt2 = vn2 * vminus_ln2_lo + vt2;
88 vt3 = vn3 * vminus_ln2_lo + vt3;
89
90 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
91 float vp0 = vc5 * vt0 + vc4;
92 float vp1 = vc5 * vt1 + vc4;
93 float vp2 = vc5 * vt2 + vc4;
94 float vp3 = vc5 * vt3 + vc4;
95
96 vp0 = vp0 * vt0 + vc3;
97 vp1 = vp1 * vt1 + vc3;
98 vp2 = vp2 * vt2 + vc3;
99 vp3 = vp3 * vt3 + vc3;
100
101 vp0 = vp0 * vt0 + vc2;
102 vp1 = vp1 * vt1 + vc2;
103 vp2 = vp2 * vt2 + vc2;
104 vp3 = vp3 * vt3 + vc2;
105
106 vp0 = vp0 * vt0 + vc1;
107 vp1 = vp1 * vt1 + vc1;
108 vp2 = vp2 * vt2 + vc1;
109 vp3 = vp3 * vt3 + vc1;
110
111 // Reconstruct the final f value:
112 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
113 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
114 // = s + (t * s) * p
115 vt0 *= vs0;
116 vt1 *= vs1;
117 vt2 *= vs2;
118 vt3 *= vs3;
119
120 float vf0 = vt0 * vp0 + vs0;
121 float vf1 = vt1 * vp1 + vs1;
122 float vf2 = vt2 * vp2 + vs2;
123 float vf3 = vt3 * vp3 + vs3;
124
125 // For inputs below denormal cutoff, replace output with +0.0f.
126 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
127 if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
128 vf0 = 0.0f;
129 }
130 if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
131 vf1 = 0.0f;
132 }
133 if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) {
134 vf2 = 0.0f;
135 }
136 if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) {
137 vf3 = 0.0f;
138 }
139
140 // Store 4 outputs at a time.
141 output[0] = vf0;
142 output[1] = vf1;
143 output[2] = vf2;
144 output[3] = vf3;
145 output += 4;
146
147 // Accumulate computed exponents.
148 vacc0 += vf0;
149 vacc1 += vf1;
150 vacc0 += vf2;
151 vacc1 += vf3;
152 }
153 // Add up all accumulators to vacc0
154 vacc0 += vacc1;
155
156 float vacc = vacc0;
157 for (; elements >= sizeof(float); elements -= sizeof(float)) {
158 // Load 1 input at a time.
159 const float vi = *input++;
160
161 // Subtract maximum input x := i - i_max. This implies x <= 0.
162 const float vx = vi - vi_max;
163
164 // Compute reduced argument n := round(x / log(2)).
165 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
166 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
167 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
168 // anyway. We fixup the result for such inputs at the very end of the algorithm.
169 float vn = vx * vlog2e + vmagic_bias;
170
171 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
172 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
173 const float vs = uint32_as_float(float_as_uint32(vn) << 23);
174
175 // Subtract the large number back to get final n := round(x / log(2)).
176 vn -= vmagic_bias;
177
178 // Compute reduced argument t := x - n * log(2).
179 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
180 float vt = vn * vminus_ln2_hi + vx;
181 vt = vn * vminus_ln2_lo + vt;
182
183 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
184 float vp = vc5 * vt + vc4;
185 vp = vp * vt + vc3;
186 vp = vp * vt + vc2;
187 vp = vp * vt + vc1;
188
189 // Reconstruct the final f value:
190 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
191 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
192 // = s + (t * s) * p
193 vt *= vs;
194 float vf = vt * vp + vs;
195
196 // For inputs below denormal cutoff, replace output with +0.0f.
197 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
198 if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
199 vf = 0.0f;
200 }
201
202 // Store 1 output at a time.
203 *output++ = vf;
204
205 // Accumulate computed exponents.
206 vacc += vf;
207 }
208 *sum = vacc;
209 }
210