1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <xnnpack/common.h>
13 #include <xnnpack/math.h>
14 #include <xnnpack/raddstoreexpminusmax.h>
15
16
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])17 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2(
18 size_t elements,
19 const float* input,
20 const float* max,
21 float* output,
22 float* sum,
23 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float vi_max = *max;
28 const float vlog2e = params->scalar_rr2_p5.log2e;
29 const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
30 const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
31 const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
32 const float vc5 = params->scalar_rr2_p5.c5;
33 const float vc4 = params->scalar_rr2_p5.c4;
34 const float vc3 = params->scalar_rr2_p5.c3;
35 const float vc2 = params->scalar_rr2_p5.c2;
36 const float vc1 = params->scalar_rr2_p5.c1;
37 const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
38
39 float vacc0 = 0.0f;
40 for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
41 // Load 2 inputs at a time.
42 const float vi0 = input[0];
43 const float vi1 = input[1];
44 input += 2;
45
46 // Subtract maximum input x := i - i_max. This implies x <= 0.
47 const float vx0 = vi0 - vi_max;
48 const float vx1 = vi1 - vi_max;
49
50 // Compute reduced argument n := round(x / log(2)).
51 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
52 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
53 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
54 // anyway. We fixup the result for such inputs at the very end of the algorithm.
55 float vn0 = vx0 * vlog2e + vmagic_bias;
56 float vn1 = vx1 * vlog2e + vmagic_bias;
57
58 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
59 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
60 const float vs0 = uint32_as_float(float_as_uint32(vn0) << 23);
61 const float vs1 = uint32_as_float(float_as_uint32(vn1) << 23);
62
63 // Subtract the large number back to get final n := round(x / log(2)).
64 vn0 -= vmagic_bias;
65 vn1 -= vmagic_bias;
66
67 // Compute reduced argument t := x - n * log(2).
68 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
69 float vt0 = vn0 * vminus_ln2_hi + vx0;
70 float vt1 = vn1 * vminus_ln2_hi + vx1;
71
72 vt0 = vn0 * vminus_ln2_lo + vt0;
73 vt1 = vn1 * vminus_ln2_lo + vt1;
74
75 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
76 float vp0 = vc5 * vt0 + vc4;
77 float vp1 = vc5 * vt1 + vc4;
78
79 vp0 = vp0 * vt0 + vc3;
80 vp1 = vp1 * vt1 + vc3;
81
82 vp0 = vp0 * vt0 + vc2;
83 vp1 = vp1 * vt1 + vc2;
84
85 vp0 = vp0 * vt0 + vc1;
86 vp1 = vp1 * vt1 + vc1;
87
88 // Reconstruct the final f value:
89 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
90 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
91 // = s + (t * s) * p
92 vt0 *= vs0;
93 vt1 *= vs1;
94
95 float vf0 = vt0 * vp0 + vs0;
96 float vf1 = vt1 * vp1 + vs1;
97
98 // For inputs below denormal cutoff, replace output with +0.0f.
99 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100 if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
101 vf0 = 0.0f;
102 }
103 if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
104 vf1 = 0.0f;
105 }
106
107 // Store 2 outputs at a time.
108 output[0] = vf0;
109 output[1] = vf1;
110 output += 2;
111
112 // Accumulate computed exponents.
113 vacc0 += vf0;
114 vacc0 += vf1;
115 }
116
117 float vacc = vacc0;
118 for (; elements >= sizeof(float); elements -= sizeof(float)) {
119 // Load 1 input at a time.
120 const float vi = *input++;
121
122 // Subtract maximum input x := i - i_max. This implies x <= 0.
123 const float vx = vi - vi_max;
124
125 // Compute reduced argument n := round(x / log(2)).
126 // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
127 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
128 // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
129 // anyway. We fixup the result for such inputs at the very end of the algorithm.
130 float vn = vx * vlog2e + vmagic_bias;
131
132 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
133 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
134 const float vs = uint32_as_float(float_as_uint32(vn) << 23);
135
136 // Subtract the large number back to get final n := round(x / log(2)).
137 vn -= vmagic_bias;
138
139 // Compute reduced argument t := x - n * log(2).
140 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
141 float vt = vn * vminus_ln2_hi + vx;
142 vt = vn * vminus_ln2_lo + vt;
143
144 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
145 float vp = vc5 * vt + vc4;
146 vp = vp * vt + vc3;
147 vp = vp * vt + vc2;
148 vp = vp * vt + vc1;
149
150 // Reconstruct the final f value:
151 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
152 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
153 // = s + (t * s) * p
154 vt *= vs;
155 float vf = vt * vp + vs;
156
157 // For inputs below denormal cutoff, replace output with +0.0f.
158 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
159 if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
160 vf = 0.0f;
161 }
162
163 // Store 1 output at a time.
164 *output++ = vf;
165
166 // Accumulate computed exponents.
167 vacc += vf;
168 }
169 *sum = vacc;
170 }
171