xref: /aosp_15_r20/external/XNNPACK/src/f32-raddstoreexpminusmax/gen/scalar-rr2-p5-x2-acc2.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/math.h>
14 #include <xnnpack/raddstoreexpminusmax.h>
15 
16 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])17 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2_acc2(
18     size_t elements,
19     const float* input,
20     const float* max,
21     float* output,
22     float* sum,
23     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float vi_max = *max;
28   const float vlog2e = params->scalar_rr2_p5.log2e;
29   const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
30   const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
31   const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
32   const float vc5 = params->scalar_rr2_p5.c5;
33   const float vc4 = params->scalar_rr2_p5.c4;
34   const float vc3 = params->scalar_rr2_p5.c3;
35   const float vc2 = params->scalar_rr2_p5.c2;
36   const float vc1 = params->scalar_rr2_p5.c1;
37   const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
38 
39   float vacc0 = 0.0f;
40   float vacc1 = 0.0f;
41   for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
42     // Load 2 inputs at a time.
43     const float vi0 = input[0];
44     const float vi1 = input[1];
45     input += 2;
46 
47     // Subtract maximum input x := i - i_max. This implies x <= 0.
48     const float vx0 = vi0 - vi_max;
49     const float vx1 = vi1 - vi_max;
50 
51     // Compute reduced argument n := round(x / log(2)).
52     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
53     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
54     // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
55     // anyway. We fixup the result for such inputs at the very end of the algorithm.
56     float vn0 = vx0 * vlog2e + vmagic_bias;
57     float vn1 = vx1 * vlog2e + vmagic_bias;
58 
59     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
60     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
61     const float vs0 = uint32_as_float(float_as_uint32(vn0) << 23);
62     const float vs1 = uint32_as_float(float_as_uint32(vn1) << 23);
63 
64     // Subtract the large number back to get final n := round(x / log(2)).
65     vn0 -= vmagic_bias;
66     vn1 -= vmagic_bias;
67 
68     // Compute reduced argument t := x - n * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     float vt0 = vn0 * vminus_ln2_hi + vx0;
71     float vt1 = vn1 * vminus_ln2_hi + vx1;
72 
73     vt0 = vn0 * vminus_ln2_lo + vt0;
74     vt1 = vn1 * vminus_ln2_lo + vt1;
75 
76     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77     float vp0 = vc5 * vt0 + vc4;
78     float vp1 = vc5 * vt1 + vc4;
79 
80     vp0 = vp0 * vt0 + vc3;
81     vp1 = vp1 * vt1 + vc3;
82 
83     vp0 = vp0 * vt0 + vc2;
84     vp1 = vp1 * vt1 + vc2;
85 
86     vp0 = vp0 * vt0 + vc1;
87     vp1 = vp1 * vt1 + vc1;
88 
89     // Reconstruct the final f value:
90     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92     //     = s + (t * s) * p
93     vt0 *= vs0;
94     vt1 *= vs1;
95 
96     float vf0 = vt0 * vp0 + vs0;
97     float vf1 = vt1 * vp1 + vs1;
98 
99     // For inputs below denormal cutoff, replace output with +0.0f.
100     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101     if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
102       vf0 = 0.0f;
103     }
104     if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
105       vf1 = 0.0f;
106     }
107 
108     // Store 2 outputs at a time.
109     output[0] = vf0;
110     output[1] = vf1;
111     output += 2;
112 
113     // Accumulate computed exponents.
114     vacc0 += vf0;
115     vacc1 += vf1;
116   }
117   // Add up all accumulators to vacc0
118   vacc0 += vacc1;
119 
120   float vacc = vacc0;
121   for (; elements >= sizeof(float); elements -= sizeof(float)) {
122     // Load 1 input at a time.
123     const float vi = *input++;
124 
125     // Subtract maximum input x := i - i_max. This implies x <= 0.
126     const float vx = vi - vi_max;
127 
128     // Compute reduced argument n := round(x / log(2)).
129     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
130     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
131     // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
132     // anyway. We fixup the result for such inputs at the very end of the algorithm.
133     float vn = vx * vlog2e + vmagic_bias;
134 
135     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
136     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
137     const float vs = uint32_as_float(float_as_uint32(vn) << 23);
138 
139     // Subtract the large number back to get final n := round(x / log(2)).
140     vn -= vmagic_bias;
141 
142     // Compute reduced argument t := x - n * log(2).
143     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
144     float vt = vn * vminus_ln2_hi + vx;
145     vt = vn * vminus_ln2_lo + vt;
146 
147     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
148     float vp = vc5 * vt + vc4;
149     vp = vp * vt + vc3;
150     vp = vp * vt + vc2;
151     vp = vp * vt + vc1;
152 
153     // Reconstruct the final f value:
154     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
155     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
156     //     = s + (t * s) * p
157     vt *= vs;
158     float vf = vt * vp + vs;
159 
160     // For inputs below denormal cutoff, replace output with +0.0f.
161     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
162     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
163       vf = 0.0f;
164     }
165 
166     // Store 1 output at a time.
167     *output++ = vf;
168 
169     // Accumulate computed exponents.
170     vacc += vf;
171   }
172   *sum = vacc;
173 }
174