1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/scalar-rr2-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <xnnpack/common.h>
13 #include <xnnpack/math.h>
14 #include <xnnpack/raddstoreexpminusmax.h>
15
16
17 // Note redefine as uint32[] to avoid redundant bitcasts.
18 extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
19
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_lut64_p2_x2_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_lut64_p2_x2_acc2(
21 size_t elements,
22 const float* input,
23 const float* max,
24 float* output,
25 float* sum,
26 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
27 {
28 assert(elements % sizeof(float) == 0);
29
30 const float vi_max = *max;
31 const float vlog2e = params->scalar_rr2_lut64_p2.log2e;
32 const float vmagic_bias = params->scalar_rr2_lut64_p2.magic_bias;
33 const uint32_t vindex_mask = UINT32_C(0x3F);
34 const float vminus_ln2_hi = params->scalar_rr2_lut64_p2.minus_ln2_hi;
35 const float vminus_ln2_lo = params->scalar_rr2_lut64_p2.minus_ln2_lo;
36 const float vc2 = params->scalar_rr2_lut64_p2.c2;
37 const float vdenorm_cutoff = params->scalar_rr2_lut64_p2.denorm_cutoff;
38
39 float vacc0 = 0.0f;
40 float vacc1 = 0.0f;
41 for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
42 // Load 2 inputs at a time.
43 const float vi0 = input[0];
44 const float vi1 = input[1];
45 input += 2;
46
47 // Subtract maximum input x := i - i_max. This implies x <= 0.
48 const float vx0 = vi0 - vi_max;
49 const float vx1 = vi1 - vi_max;
50
51 // Compute reduced argument n := round(x * 64 / log(2)).
52 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
53 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
54 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
55 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
56 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
57 // algorithm.
58 float vn0 = vx0 * vlog2e + vmagic_bias;
59 float vn1 = vx1 * vlog2e + vmagic_bias;
60
61 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
62 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
63 // e := int(n / 64). We create s in two steps:
64 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
65 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
67 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
68 // and thus the adjusted exponent is not lower than -126.
69 //
70 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
71 const uint32_t ve0 = (float_as_uint32(vn0) & UINT32_C(0xFFFFFFC0)) << 17;
72 const uint32_t ve1 = (float_as_uint32(vn1) & UINT32_C(0xFFFFFFC0)) << 17;
73
74 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
75 const uint32_t vidx0 = float_as_uint32(vn0) & vindex_mask;
76 const uint32_t vidx1 = float_as_uint32(vn1) & vindex_mask;
77 // Adjust exponent of the value l fetched from the table to get the final s value.
78 const float vs0 = uint32_as_float(xnn_table_exp2_k_over_64[vidx0] + ve0);
79 const float vs1 = uint32_as_float(xnn_table_exp2_k_over_64[vidx1] + ve1);
80
81 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
82 vn0 -= vmagic_bias;
83 vn1 -= vmagic_bias;
84
85 // Compute reduced argument t := x - n * log(2) / 64.
86 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
87 float vt0 = vn0 * vminus_ln2_hi + vx0;
88 float vt1 = vn1 * vminus_ln2_hi + vx1;
89
90 vt0 = vn0 * vminus_ln2_lo + vt0;
91 vt1 = vn1 * vminus_ln2_lo + vt1;
92
93 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
94 float vp0 = vt0 * vc2;
95 float vp1 = vt1 * vc2;
96
97 vp0 = vp0 * vt0 + vt0;
98 vp1 = vp1 * vt1 + vt1;
99
100 // Reconstruct the final f value:
101 // f = s * (1 + t * (1 + t * c2))
102 // = s * (1 + t + t * (t * c2))
103 // = s + s * (t + t * (t * c2))
104 // = s + s * p
105 float vf0 = vp0 * vs0 + vs0;
106 float vf1 = vp1 * vs1 + vs1;
107
108 // For inputs below denormal cutoff, replace output with +0.0f.
109 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
110 if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
111 vf0 = 0.0f;
112 }
113 if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
114 vf1 = 0.0f;
115 }
116
117 // Store 2 outputs at a time.
118 output[0] = vf0;
119 output[1] = vf1;
120 output += 2;
121
122 // Accumulate computed exponents.
123 vacc0 += vf0;
124 vacc1 += vf1;
125 }
126 // Add up all accumulators to vacc0
127 vacc0 += vacc1;
128
129 float vacc = vacc0;
130 for (; elements >= sizeof(float); elements -= sizeof(float)) {
131 // Load 1 input at a time.
132 const float vi = *input++;
133
134 // Subtract maximum input x := i - i_max. This implies x <= 0.
135 const float vx = vi - vi_max;
136
137 // Compute reduced argument n := round(x * 64 / log(2)).
138 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
139 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
140 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
141 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
142 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
143 // algorithm.
144 float vn = vx * vlog2e + vmagic_bias;
145
146 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
147 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
148 // e := int(n / 64). We create s in two steps:
149 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
150 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
151 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
152 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
153 // and thus the adjusted exponent is not lower than -126.
154 //
155 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
156 const uint32_t ve = (float_as_uint32(vn) & UINT32_C(0xFFFFFFC0)) << 17;
157
158 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
159 const uint32_t vidx = float_as_uint32(vn) & vindex_mask;
160 // Adjust exponent of the value l fetched from the table to get the final s value.
161 const float vs = uint32_as_float(xnn_table_exp2_k_over_64[vidx] + ve);
162
163 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
164 vn -= vmagic_bias;
165
166 // Compute reduced argument t := x - n * log(2) / 64.
167 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
168 float vt = vn * vminus_ln2_hi + vx;
169 vt = vn * vminus_ln2_lo + vt;
170
171 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
172 float vp = vt * vc2;
173 vp = vp * vt + vt;
174
175 // Reconstruct the final f value:
176 // f = s * (1 + t * (1 + t * c2))
177 // = s * (1 + t + t * (t * c2))
178 // = s + s * (t + t * (t * c2))
179 // = s + s * p
180 float vf = vp * vs + vs;
181
182 // For inputs below denormal cutoff, replace output with +0.0f.
183 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
184 if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
185 vf = 0.0f;
186 }
187
188 // Store 1 output at a time.
189 *output++ = vf;
190
191 // Accumulate computed exponents.
192 vacc += vf;
193 }
194 *sum = vacc;
195 }
196