xref: /aosp_15_r20/external/XNNPACK/src/f32-raddextexp/gen/avx512f-p5-scalef-x160-acc5.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/common.h>
16 #include <xnnpack/intrinsics-polyfill.h>
17 #include <xnnpack/raddextexp.h>
18 
19 
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x160_acc5(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x160_acc5(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
39 
40   __m512 vaccv0 = _mm512_setzero_ps();
41   __m512 vaccv1 = _mm512_setzero_ps();
42   __m512 vaccv2 = _mm512_setzero_ps();
43   __m512 vaccv3 = _mm512_setzero_ps();
44   __m512 vaccv4 = _mm512_setzero_ps();
45   __m512 vacce0 = vminus_inf;
46   __m512 vacce1 = vminus_inf;
47   __m512 vacce2 = vminus_inf;
48   __m512 vacce3 = vminus_inf;
49   __m512 vacce4 = vminus_inf;
50   for (; elements >= 160 * sizeof(float); elements -= 160 * sizeof(float)) {
51     // Load 160 (10x16) inputs at a time.
52     const __m512 vx0 = _mm512_loadu_ps(x);
53     const __m512 vx1 = _mm512_loadu_ps(x + 16);
54     const __m512 vx2 = _mm512_loadu_ps(x + 32);
55     const __m512 vx3 = _mm512_loadu_ps(x + 48);
56     const __m512 vx4 = _mm512_loadu_ps(x + 64);
57     const __m512 vx5 = _mm512_loadu_ps(x + 80);
58     const __m512 vx6 = _mm512_loadu_ps(x + 96);
59     const __m512 vx7 = _mm512_loadu_ps(x + 112);
60     const __m512 vx8 = _mm512_loadu_ps(x + 128);
61     const __m512 vx9 = _mm512_loadu_ps(x + 144);
62     x += 160;
63 
64     // Compute reduced argument elements := round(x / log(2)).
65     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
66     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
67     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
68     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
69     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
70     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
71     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
72     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
73     const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
74     const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
75 
76     // Compute reduced argument t := x - elements * log(2).
77     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
79     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
80     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
81     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
82     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
83     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
84     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
85     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
86     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
87     __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
88 
89     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
90     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
91     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
92     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
93     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
94     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
95     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
96     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
97     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
98     vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
99 
100     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
101     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
102     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
103     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
104     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
105     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
106     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
107     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
108     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
109     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
110     __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
111 
112     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
113     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
114     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
115     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
116     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
117     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
118     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
119     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
120     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
121     vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
122 
123     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
124     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
125     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
126     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
127     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
128     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
129     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
130     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
131     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
132     vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
133 
134     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
135     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
136     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
137     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
138     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
139     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
140     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
141     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
142     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
143     vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
144 
145     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
146     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
147     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
148     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
149     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
150     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
151     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
152     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
153     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
154     vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
155 
156     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
157     //  - vnX is "exponent"
158     //  - vpX is "mantissa"
159     //
160     // exp2(ae) * av + exp2(be) * bv =
161     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
162     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
163     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
164     //
165     // For computational efficiency we add three "extended" floating-point numbers at a time.
166     __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
167     __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1);
168     __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2);
169     __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3);
170     __m512 vmax_e4 = _mm512_max_ps(vacce4, vn4);
171     vmax_e0 = _mm512_max_ps(vmax_e0, vn5);
172     vmax_e1 = _mm512_max_ps(vmax_e1, vn6);
173     vmax_e2 = _mm512_max_ps(vmax_e2, vn7);
174     vmax_e3 = _mm512_max_ps(vmax_e3, vn8);
175     vmax_e4 = _mm512_max_ps(vmax_e4, vn9);
176 
177     const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
178     const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1);
179     const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2);
180     const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3);
181     const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_e4);
182     const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
183     const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1);
184     const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2);
185     const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3);
186     const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e4);
187     const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0);
188     const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e1);
189     const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e2);
190     const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e3);
191     const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e4);
192 
193     // Update accumulated "mantissa" and "exponent" values
194     vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
195     vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1);
196     vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2);
197     vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3);
198     vaccv4 = _mm512_scalef_ps(vaccv4, vdelta_acce4);
199     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
200     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1));
201     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2));
202     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3));
203     vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp4, vdelta_e4));
204     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5));
205     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp6, vdelta_e6));
206     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp7, vdelta_e7));
207     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp8, vdelta_e8));
208     vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp9, vdelta_e9));
209 
210     vacce0 = vmax_e0;
211     vacce1 = vmax_e1;
212     vacce2 = vmax_e2;
213     vacce3 = vmax_e3;
214     vacce4 = vmax_e4;
215   }
216 
217   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
218   const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1);
219   const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3);
220   const __m512 vmax_acce4 = vacce4;
221   const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23);
222   const __m512 vmax_acce01234 = _mm512_max_ps(vmax_acce0123, vmax_acce4);
223 
224   const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01234);
225   const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01234);
226   const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce01234);
227   const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce01234);
228   const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_acce01234);
229 
230   __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0);
231   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1));
232   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2));
233   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3));
234   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv4, vdelta_acce4));
235   __m512 vacce = vmax_acce01234;
236 
237   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
238     // Load 16 inputs at a time.
239     const __m512 vx = _mm512_loadu_ps(x);
240     x += 16;
241 
242     // Compute reduced argument elements := round(x / log(2)).
243     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
244 
245     // Compute reduced argument t := x - elements * log(2).
246     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
247     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
248     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
249 
250     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
251     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
252     vp = _mm512_fmadd_ps(vp, vt, vc3);
253     vp = _mm512_fmadd_ps(vp, vt, vc2);
254     vp = _mm512_fmadd_ps(vp, vt, vc1);
255     vp = _mm512_fmadd_ps(vp, vt, vc0);
256 
257     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
258     const __m512 vmax_e = _mm512_max_ps(vacce, vn);
259     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
260     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
261     vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
262     vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
263 
264     vacce = vmax_e;
265   }
266   if XNN_UNLIKELY(elements != 0) {
267     // Prepare mask for valid 32-bit elements (depends on elements).
268     elements >>= 2 /* log2(sizeof(float)) */;
269     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
270 
271     // Load up to 15 inputs at a time.
272     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
273 
274     // Compute reduced argument elements := round(x / log(2)).
275     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
276 
277     // Compute reduced argument t := x - elements * log(2).
278     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
279     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
280     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
281 
282     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
283     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
284     vp = _mm512_fmadd_ps(vp, vt, vc3);
285     vp = _mm512_fmadd_ps(vp, vt, vc2);
286     vp = _mm512_fmadd_ps(vp, vt, vc1);
287     vp = _mm512_fmadd_ps(vp, vt, vc0);
288 
289     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
290     const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
291     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
292     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
293     vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
294     vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
295     vacce = vmax_e;
296   }
297 
298   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
299   const float vmax_acce = _mm512_reduce_max_ps(vacce);
300   const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
301 
302   sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
303   sum[1] = vmax_acce;
304 
305   _mm256_zeroupper();
306 }
307