xref: /aosp_15_r20/external/XNNPACK/src/f32-raddextexp/gen/avx512f-p5-scalef-x128.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/common.h>
16 #include <xnnpack/intrinsics-polyfill.h>
17 #include <xnnpack/raddextexp.h>
18 
19 
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
39 
40   __m512 vaccv0 = _mm512_setzero_ps();
41   __m512 vacce0 = vminus_inf;
42   for (; elements >= 128 * sizeof(float); elements -= 128 * sizeof(float)) {
43     // Load 128 (8x16) inputs at a time.
44     const __m512 vx0 = _mm512_loadu_ps(x);
45     const __m512 vx1 = _mm512_loadu_ps(x + 16);
46     const __m512 vx2 = _mm512_loadu_ps(x + 32);
47     const __m512 vx3 = _mm512_loadu_ps(x + 48);
48     const __m512 vx4 = _mm512_loadu_ps(x + 64);
49     const __m512 vx5 = _mm512_loadu_ps(x + 80);
50     const __m512 vx6 = _mm512_loadu_ps(x + 96);
51     const __m512 vx7 = _mm512_loadu_ps(x + 112);
52     x += 128;
53 
54     // Compute reduced argument elements := round(x / log(2)).
55     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
56     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
57     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
58     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
59     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
60     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
61     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
62     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
63 
64     // Compute reduced argument t := x - elements * log(2).
65     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
66     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
67     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
68     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
69     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
70     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
71     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
72     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
73     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
74 
75     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
76     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
77     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
78     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
79     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
80     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
81     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
82     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
83 
84     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
85     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
86     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
87     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
88     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
89     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
90     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
91     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
92     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
93 
94     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
95     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
96     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
97     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
98     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
99     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
100     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
101     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
102 
103     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
104     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
105     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
106     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
107     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
108     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
109     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
110     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
111 
112     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
113     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
114     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
115     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
116     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
117     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
118     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
119     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
120 
121     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
122     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
123     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
124     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
125     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
126     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
127     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
128     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
129 
130     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
131     //  - vnX is "exponent"
132     //  - vpX is "mantissa"
133     //
134     // exp2(ae) * av + exp2(be) * bv =
135     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
136     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
137     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
138     //
139     // For computational efficiency we add three "extended" floating-point numbers at a time.
140     __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
141     vmax_e0 = _mm512_max_ps(vmax_e0, vn1);
142     vmax_e0 = _mm512_max_ps(vmax_e0, vn2);
143     vmax_e0 = _mm512_max_ps(vmax_e0, vn3);
144     vmax_e0 = _mm512_max_ps(vmax_e0, vn4);
145     vmax_e0 = _mm512_max_ps(vmax_e0, vn5);
146     vmax_e0 = _mm512_max_ps(vmax_e0, vn6);
147     vmax_e0 = _mm512_max_ps(vmax_e0, vn7);
148 
149     const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
150     const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
151     const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e0);
152     const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0);
153     const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0);
154     const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0);
155     const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0);
156     const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0);
157     const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e0);
158 
159     // Update accumulated "mantissa" and "exponent" values
160     vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
161     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
162     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp1, vdelta_e1));
163     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2));
164     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3));
165     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4));
166     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5));
167     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6));
168     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp7, vdelta_e7));
169 
170     vacce0 = vmax_e0;
171   }
172 
173   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
174   __m512 vaccv = vaccv0;
175   __m512 vacce = vacce0;
176 
177   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
178     // Load 16 inputs at a time.
179     const __m512 vx = _mm512_loadu_ps(x);
180     x += 16;
181 
182     // Compute reduced argument elements := round(x / log(2)).
183     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
184 
185     // Compute reduced argument t := x - elements * log(2).
186     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
187     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
188     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
189 
190     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
191     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
192     vp = _mm512_fmadd_ps(vp, vt, vc3);
193     vp = _mm512_fmadd_ps(vp, vt, vc2);
194     vp = _mm512_fmadd_ps(vp, vt, vc1);
195     vp = _mm512_fmadd_ps(vp, vt, vc0);
196 
197     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
198     const __m512 vmax_e = _mm512_max_ps(vacce, vn);
199     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
200     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
201     vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
202     vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
203 
204     vacce = vmax_e;
205   }
206   if XNN_UNLIKELY(elements != 0) {
207     // Prepare mask for valid 32-bit elements (depends on elements).
208     elements >>= 2 /* log2(sizeof(float)) */;
209     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
210 
211     // Load up to 15 inputs at a time.
212     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
213 
214     // Compute reduced argument elements := round(x / log(2)).
215     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
216 
217     // Compute reduced argument t := x - elements * log(2).
218     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
219     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
220     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
221 
222     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
223     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
224     vp = _mm512_fmadd_ps(vp, vt, vc3);
225     vp = _mm512_fmadd_ps(vp, vt, vc2);
226     vp = _mm512_fmadd_ps(vp, vt, vc1);
227     vp = _mm512_fmadd_ps(vp, vt, vc0);
228 
229     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
230     const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
231     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
232     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
233     vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
234     vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
235     vacce = vmax_e;
236   }
237 
238   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
239   const float vmax_acce = _mm512_reduce_max_ps(vacce);
240   const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
241 
242   sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
243   sum[1] = vmax_acce;
244 
245   _mm256_zeroupper();
246 }
247