xref: /aosp_15_r20/external/XNNPACK/src/f32-raddexpminusmax/gen/avx512f-p5-scalef-x160.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/raddexpminusmax.h>
16 
17 
xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160(size_t elements,const float * input,float * sum,float max)18 void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160(
19     size_t elements,
20     const float* input,
21     float* sum,
22     float max)
23 {
24   assert(elements % sizeof(float) == 0);
25 
26   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
27   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
28   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
29 
30   const __m512 vc0 = _mm512_set1_ps(1.0f);
31   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
32   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
33   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
34   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
35   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
36 
37   const __m512 vi_max = _mm512_set1_ps(max);
38 
39   __m512 vacc0 = _mm512_setzero_ps();
40   for (; elements >= 160 * sizeof(float); elements -= 160 * sizeof(float)) {
41     // Load 160 (10x16) inputs at a time.
42     const __m512 vi0 = _mm512_loadu_ps(input);
43     const __m512 vi1 = _mm512_loadu_ps(input + 16);
44     const __m512 vi2 = _mm512_loadu_ps(input + 32);
45     const __m512 vi3 = _mm512_loadu_ps(input + 48);
46     const __m512 vi4 = _mm512_loadu_ps(input + 64);
47     const __m512 vi5 = _mm512_loadu_ps(input + 80);
48     const __m512 vi6 = _mm512_loadu_ps(input + 96);
49     const __m512 vi7 = _mm512_loadu_ps(input + 112);
50     const __m512 vi8 = _mm512_loadu_ps(input + 128);
51     const __m512 vi9 = _mm512_loadu_ps(input + 144);
52     input += 160;
53 
54     // Subtract maximum input x := i - i_max.
55     const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
56     const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
57     const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
58     const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
59     const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
60     const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
61     const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
62     const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
63     const __m512 vx8 = _mm512_sub_ps(vi8, vi_max);
64     const __m512 vx9 = _mm512_sub_ps(vi9, vi_max);
65 
66     // Compute reduced argument elements := round(x / log(2)).
67     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
68     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
69     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
70     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
71     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
72     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
73     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
74     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
75     const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
76     const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
77 
78     // Compute reduced argument t := x - elements * log(2).
79     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
81     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
82     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
83     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
84     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
85     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
86     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
87     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
88     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
89     __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
90 
91     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
92     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
93     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
94     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
95     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
96     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
97     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
98     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
99     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
100     vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
101 
102     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
103     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
104     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
105     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
106     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
107     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
108     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
109     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
110     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
111     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
112     __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
113 
114     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
115     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
116     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
117     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
118     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
119     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
120     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
121     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
122     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
123     vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
124 
125     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
126     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
127     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
128     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
129     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
130     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
131     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
132     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
133     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
134     vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
135 
136     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
137     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
138     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
139     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
140     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
141     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
142     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
143     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
144     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
145     vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
146 
147     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
148     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
149     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
150     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
151     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
152     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
153     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
154     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
155     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
156     vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
157 
158     // Reconstruct the final f value:
159     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
160     //     = 2**elements * p
161     const __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
162     const __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
163     const __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
164     const __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
165     const __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
166     const __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
167     const __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
168     const __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
169     const __m512 vf8 = _mm512_scalef_ps(vp8, vn8);
170     const __m512 vf9 = _mm512_scalef_ps(vp9, vn9);
171 
172     // Accumulate computed exponents.
173     vacc0 = _mm512_add_ps(vacc0, vf0);
174     vacc0 = _mm512_add_ps(vacc0, vf1);
175     vacc0 = _mm512_add_ps(vacc0, vf2);
176     vacc0 = _mm512_add_ps(vacc0, vf3);
177     vacc0 = _mm512_add_ps(vacc0, vf4);
178     vacc0 = _mm512_add_ps(vacc0, vf5);
179     vacc0 = _mm512_add_ps(vacc0, vf6);
180     vacc0 = _mm512_add_ps(vacc0, vf7);
181     vacc0 = _mm512_add_ps(vacc0, vf8);
182     vacc0 = _mm512_add_ps(vacc0, vf9);
183   }
184 
185   __m512 vacc = vacc0;
186   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
187     // Load 16 inputs at a time.
188     const __m512 vi = _mm512_loadu_ps(input);
189     input += 16;
190 
191     // Subtract maximum input x := i - i_max.
192     const __m512 vx = _mm512_sub_ps(vi, vi_max);
193 
194     // Compute reduced argument elements := round(x / log(2)).
195     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
196 
197     // Compute reduced argument t := x - elements * log(2).
198     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
199     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
200     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
201 
202     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
203     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
204     vp = _mm512_fmadd_ps(vp, vt, vc3);
205     vp = _mm512_fmadd_ps(vp, vt, vc2);
206     vp = _mm512_fmadd_ps(vp, vt, vc1);
207     vp = _mm512_fmadd_ps(vp, vt, vc0);
208 
209     // Reconstruct the final f value:
210     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211     //     = 2**elements * p
212     const __m512 vf = _mm512_scalef_ps(vp, vn);
213 
214     // Accumulate computed exponents.
215     vacc = _mm512_add_ps(vacc, vf);
216   }
217   if (elements != 0) {
218     // Prepare mask for valid 32-bit elements (depends on elements).
219     elements >>= 2 /* log2(sizeof(float)) */;
220     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
221 
222     // Load up to 15 inputs at a time.
223     const __m512 vi = _mm512_maskz_loadu_ps(vmask, input);
224 
225     // Subtract maximum input x := i - i_max.
226     const __m512 vx = _mm512_sub_ps(vi, vi_max);
227 
228     // Compute reduced argument elements := round(x / log(2)).
229     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
230 
231     // Compute reduced argument t := x - elements * log(2).
232     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
233     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
234     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
235 
236     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
237     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
238     vp = _mm512_fmadd_ps(vp, vt, vc3);
239     vp = _mm512_fmadd_ps(vp, vt, vc2);
240     vp = _mm512_fmadd_ps(vp, vt, vc1);
241     vp = _mm512_fmadd_ps(vp, vt, vc0);
242 
243     // Reconstruct the final f value:
244     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
245     //     = 2**elements * p
246     const __m512 vf = _mm512_scalef_ps(vp, vn);
247 
248     // Accumulate computed exponents.
249     vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf);
250   }
251   *sum = _mm512_reduce_add_ps(vacc);
252 }
253