xref: /aosp_15_r20/external/XNNPACK/src/f32-raddexpminusmax/gen/avx2-p5-x80.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/raddexpminusmax.h>
15 
16 
17 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
18 
xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80(size_t elements,const float * input,float * sum,float max)19 void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80(
20     size_t elements,
21     const float* input,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
30   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
31   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
32   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
33 
34   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
35   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
36   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
37   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
38   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
39 
40   const __m256 vi_max = _mm256_set1_ps(max);
41 
42   __m256 vacc0 = _mm256_setzero_ps();
43   for (; elements >= 80 * sizeof(float); elements -= 80 * sizeof(float)) {
44     // Load 80 (10x8) inputs at a time.
45     const __m256 vi0 = _mm256_loadu_ps(input);
46     const __m256 vi1 = _mm256_loadu_ps(input + 8);
47     const __m256 vi2 = _mm256_loadu_ps(input + 16);
48     const __m256 vi3 = _mm256_loadu_ps(input + 24);
49     const __m256 vi4 = _mm256_loadu_ps(input + 32);
50     const __m256 vi5 = _mm256_loadu_ps(input + 40);
51     const __m256 vi6 = _mm256_loadu_ps(input + 48);
52     const __m256 vi7 = _mm256_loadu_ps(input + 56);
53     const __m256 vi8 = _mm256_loadu_ps(input + 64);
54     const __m256 vi9 = _mm256_loadu_ps(input + 72);
55     input += 80;
56 
57     // Subtract maximum input x := i - i_max. This implies x <= 0.
58     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
59     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
60     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
61     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
62     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
63     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
64     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
65     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
66     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
67     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
68 
69     // Compute reduced argument elements := round(x / log(2)).
70     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
71     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
72     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
73     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
74     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
75     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
76     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
77     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
78     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
79     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
80 
81     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
82     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
83     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
84     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
85     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
86     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
87     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
88     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
89     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
90     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
91     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
92     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
93 
94     // Subtract the large number back to get final elements := round(x / log(2)).
95     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
96     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
97     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
98     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
99     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
100     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
101     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
102     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
103     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
104     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
105 
106     // Compute reduced argument t := x - elements * log(2).
107     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
108     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
109     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
110     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
111     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
112     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
113     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
114     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
115     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
116     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
117     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
118 
119     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
120     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
121     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
122     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
123     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
124     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
125     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
126     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
127     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
128     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
129 
130     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
131     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
132     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
133     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
134     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
135     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
136     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
137     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
138     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
139     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
140     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
141 
142     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
143     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
144     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
145     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
146     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
147     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
148     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
149     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
150     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
151     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
152 
153     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
154     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
155     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
156     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
157     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
158     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
159     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
160     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
161     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
162     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
163 
164     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
165     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
166     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
167     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
168     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
169     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
170     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
171     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
172     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
173     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
174 
175     // Reconstruct the final f value:
176     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
177     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
178     //     = s + (t * s) * p
179     vt0 = _mm256_mul_ps(vt0, vs0);
180     vt1 = _mm256_mul_ps(vt1, vs1);
181     vt2 = _mm256_mul_ps(vt2, vs2);
182     vt3 = _mm256_mul_ps(vt3, vs3);
183     vt4 = _mm256_mul_ps(vt4, vs4);
184     vt5 = _mm256_mul_ps(vt5, vs5);
185     vt6 = _mm256_mul_ps(vt6, vs6);
186     vt7 = _mm256_mul_ps(vt7, vs7);
187     vt8 = _mm256_mul_ps(vt8, vs8);
188     vt9 = _mm256_mul_ps(vt9, vs9);
189 
190     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
191     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
192     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
193     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
194     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
195     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
196     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
197     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
198     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
199     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
200 
201     // For inputs below zero cutoff, replace output with +0.0f.
202     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
203     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
204     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
205     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
206     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
207     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
208     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
209     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
210     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
211     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
212     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
213 
214     // Accumulate computed exponents.
215     vacc0 = _mm256_add_ps(vacc0, vf0);
216     vacc0 = _mm256_add_ps(vacc0, vf1);
217     vacc0 = _mm256_add_ps(vacc0, vf2);
218     vacc0 = _mm256_add_ps(vacc0, vf3);
219     vacc0 = _mm256_add_ps(vacc0, vf4);
220     vacc0 = _mm256_add_ps(vacc0, vf5);
221     vacc0 = _mm256_add_ps(vacc0, vf6);
222     vacc0 = _mm256_add_ps(vacc0, vf7);
223     vacc0 = _mm256_add_ps(vacc0, vf8);
224     vacc0 = _mm256_add_ps(vacc0, vf9);
225   }
226 
227   __m256 vacc = vacc0;
228   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
229     // Load 8 inputs at a time.
230     const __m256 vi = _mm256_loadu_ps(input);
231     input += 8;
232 
233     // Subtract maximum input x := i - i_max. This implies x <= 0.
234     const __m256 vx = _mm256_sub_ps(vi, vi_max);
235 
236     // Compute reduced argument elements := round(x / log(2)).
237     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
238 
239     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
240     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
241     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
242 
243     // Subtract the large number back to get final elements := round(x / log(2)).
244     vn = _mm256_sub_ps(vn, vmagic_bias);
245 
246     // Compute reduced argument t := x - elements * log(2).
247     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
248     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
249     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
250 
251     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
252     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
253     vp = _mm256_fmadd_ps(vp, vt, vc3);
254     vp = _mm256_fmadd_ps(vp, vt, vc2);
255     vp = _mm256_fmadd_ps(vp, vt, vc1);
256 
257     // Reconstruct the final f value:
258     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
259     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
260     //     = s + (t * s) * p
261     vt = _mm256_mul_ps(vt, vs);
262     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
263 
264     // For inputs below zero cutoff, replace output with +0.0f.
265     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
266     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
267 
268     // Accumulate computed exponents.
269     vacc = _mm256_add_ps(vacc, vf);
270   }
271   if (elements != 0) {
272     assert(elements >= 1 * sizeof(float));
273     assert(elements <= 7 * sizeof(float));
274     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
275 
276     // Load up to 7 inputs at a time.
277     const __m256 vi = _mm256_maskload_ps(input, vmask);
278 
279     // Subtract maximum input x := i - i_max. This implies x <= 0.
280     const __m256 vx = _mm256_sub_ps(vi, vi_max);
281 
282     // Compute reduced argument elements := round(x / log(2)).
283     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
284 
285     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
286     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
287     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
288 
289     // Subtract the large number back to get final elements := round(x / log(2)).
290     vn = _mm256_sub_ps(vn, vmagic_bias);
291 
292     // Compute reduced argument t := x - elements * log(2).
293     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
294     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
295     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
296 
297     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
298     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
299     vp = _mm256_fmadd_ps(vp, vt, vc3);
300     vp = _mm256_fmadd_ps(vp, vt, vc2);
301     vp = _mm256_fmadd_ps(vp, vt, vc1);
302 
303     // Reconstruct the final f value:
304     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
305     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
306     //     = s + (t * s) * p
307     vt = _mm256_mul_ps(vt, vs);
308     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
309 
310     // For inputs below zero cutoff, replace output with +0.0f.
311     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
312     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
313 
314     // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
315     vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
316   }
317   // Reduce 8 elements in the SIMD register
318   __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
319   vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
320   vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
321   _mm_store_ss(sum, vacc_lo);
322   _mm256_zeroupper();
323 }
324