xref: /aosp_15_r20/external/XNNPACK/src/f32-raddexpminusmax/gen/avx2-p5-x80-acc5.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/raddexpminusmax.h>
15 
16 
17 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
18 
xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80_acc5(size_t elements,const float * input,float * sum,float max)19 void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80_acc5(
20     size_t elements,
21     const float* input,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
30   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
31   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
32   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
33 
34   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
35   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
36   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
37   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
38   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
39 
40   const __m256 vi_max = _mm256_set1_ps(max);
41 
42   __m256 vacc0 = _mm256_setzero_ps();
43   __m256 vacc1 = _mm256_setzero_ps();
44   __m256 vacc2 = _mm256_setzero_ps();
45   __m256 vacc3 = _mm256_setzero_ps();
46   __m256 vacc4 = _mm256_setzero_ps();
47   for (; elements >= 80 * sizeof(float); elements -= 80 * sizeof(float)) {
48     // Load 80 (10x8) inputs at a time.
49     const __m256 vi0 = _mm256_loadu_ps(input);
50     const __m256 vi1 = _mm256_loadu_ps(input + 8);
51     const __m256 vi2 = _mm256_loadu_ps(input + 16);
52     const __m256 vi3 = _mm256_loadu_ps(input + 24);
53     const __m256 vi4 = _mm256_loadu_ps(input + 32);
54     const __m256 vi5 = _mm256_loadu_ps(input + 40);
55     const __m256 vi6 = _mm256_loadu_ps(input + 48);
56     const __m256 vi7 = _mm256_loadu_ps(input + 56);
57     const __m256 vi8 = _mm256_loadu_ps(input + 64);
58     const __m256 vi9 = _mm256_loadu_ps(input + 72);
59     input += 80;
60 
61     // Subtract maximum input x := i - i_max. This implies x <= 0.
62     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
63     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
64     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
65     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
66     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
67     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
68     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
69     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
70     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
71     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
72 
73     // Compute reduced argument elements := round(x / log(2)).
74     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
75     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
76     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
77     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
78     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
79     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
80     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
81     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
82     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
83     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
84 
85     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
86     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
87     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
88     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
89     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
90     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
91     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
92     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
93     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
94     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
95     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
96     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
97 
98     // Subtract the large number back to get final elements := round(x / log(2)).
99     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
100     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
101     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
102     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
103     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
104     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
105     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
106     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
107     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
108     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
109 
110     // Compute reduced argument t := x - elements * log(2).
111     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
112     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
113     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
114     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
115     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
116     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
117     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
118     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
119     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
120     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
121     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
122 
123     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
124     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
125     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
126     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
127     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
128     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
129     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
130     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
131     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
132     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
133 
134     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
135     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
136     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
137     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
138     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
139     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
140     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
141     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
142     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
143     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
144     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
145 
146     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
147     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
148     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
149     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
150     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
151     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
152     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
153     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
154     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
155     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
156 
157     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
158     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
159     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
160     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
161     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
162     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
163     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
164     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
165     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
166     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
167 
168     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
169     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
170     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
171     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
172     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
173     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
174     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
175     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
176     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
177     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
178 
179     // Reconstruct the final f value:
180     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
181     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
182     //     = s + (t * s) * p
183     vt0 = _mm256_mul_ps(vt0, vs0);
184     vt1 = _mm256_mul_ps(vt1, vs1);
185     vt2 = _mm256_mul_ps(vt2, vs2);
186     vt3 = _mm256_mul_ps(vt3, vs3);
187     vt4 = _mm256_mul_ps(vt4, vs4);
188     vt5 = _mm256_mul_ps(vt5, vs5);
189     vt6 = _mm256_mul_ps(vt6, vs6);
190     vt7 = _mm256_mul_ps(vt7, vs7);
191     vt8 = _mm256_mul_ps(vt8, vs8);
192     vt9 = _mm256_mul_ps(vt9, vs9);
193 
194     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
195     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
196     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
197     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
198     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
199     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
200     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
201     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
202     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
203     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
204 
205     // For inputs below zero cutoff, replace output with +0.0f.
206     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
207     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
208     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
209     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
210     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
211     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
212     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
213     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
214     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
215     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
216     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
217 
218     // Accumulate computed exponents.
219     vacc0 = _mm256_add_ps(vacc0, vf0);
220     vacc1 = _mm256_add_ps(vacc1, vf1);
221     vacc2 = _mm256_add_ps(vacc2, vf2);
222     vacc3 = _mm256_add_ps(vacc3, vf3);
223     vacc4 = _mm256_add_ps(vacc4, vf4);
224     vacc0 = _mm256_add_ps(vacc0, vf5);
225     vacc1 = _mm256_add_ps(vacc1, vf6);
226     vacc2 = _mm256_add_ps(vacc2, vf7);
227     vacc3 = _mm256_add_ps(vacc3, vf8);
228     vacc4 = _mm256_add_ps(vacc4, vf9);
229   }
230   // Add up all accumulators to vacc0
231   vacc0 = _mm256_add_ps(vacc0, vacc1);
232   vacc2 = _mm256_add_ps(vacc2, vacc3);
233   vacc0 = _mm256_add_ps(vacc0, vacc2);
234   vacc0 = _mm256_add_ps(vacc0, vacc4);
235 
236   __m256 vacc = vacc0;
237   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
238     // Load 8 inputs at a time.
239     const __m256 vi = _mm256_loadu_ps(input);
240     input += 8;
241 
242     // Subtract maximum input x := i - i_max. This implies x <= 0.
243     const __m256 vx = _mm256_sub_ps(vi, vi_max);
244 
245     // Compute reduced argument elements := round(x / log(2)).
246     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
247 
248     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
249     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
250     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
251 
252     // Subtract the large number back to get final elements := round(x / log(2)).
253     vn = _mm256_sub_ps(vn, vmagic_bias);
254 
255     // Compute reduced argument t := x - elements * log(2).
256     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
257     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
258     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
259 
260     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
261     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
262     vp = _mm256_fmadd_ps(vp, vt, vc3);
263     vp = _mm256_fmadd_ps(vp, vt, vc2);
264     vp = _mm256_fmadd_ps(vp, vt, vc1);
265 
266     // Reconstruct the final f value:
267     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
268     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
269     //     = s + (t * s) * p
270     vt = _mm256_mul_ps(vt, vs);
271     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
272 
273     // For inputs below zero cutoff, replace output with +0.0f.
274     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
275     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
276 
277     // Accumulate computed exponents.
278     vacc = _mm256_add_ps(vacc, vf);
279   }
280   if (elements != 0) {
281     assert(elements >= 1 * sizeof(float));
282     assert(elements <= 7 * sizeof(float));
283     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
284 
285     // Load up to 7 inputs at a time.
286     const __m256 vi = _mm256_maskload_ps(input, vmask);
287 
288     // Subtract maximum input x := i - i_max. This implies x <= 0.
289     const __m256 vx = _mm256_sub_ps(vi, vi_max);
290 
291     // Compute reduced argument elements := round(x / log(2)).
292     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
293 
294     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
295     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
296     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
297 
298     // Subtract the large number back to get final elements := round(x / log(2)).
299     vn = _mm256_sub_ps(vn, vmagic_bias);
300 
301     // Compute reduced argument t := x - elements * log(2).
302     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
303     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
304     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
305 
306     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
307     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
308     vp = _mm256_fmadd_ps(vp, vt, vc3);
309     vp = _mm256_fmadd_ps(vp, vt, vc2);
310     vp = _mm256_fmadd_ps(vp, vt, vc1);
311 
312     // Reconstruct the final f value:
313     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
314     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
315     //     = s + (t * s) * p
316     vt = _mm256_mul_ps(vt, vs);
317     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
318 
319     // For inputs below zero cutoff, replace output with +0.0f.
320     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
321     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
322 
323     // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
324     vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
325   }
326   // Reduce 8 elements in the SIMD register
327   __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
328   vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
329   vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
330   _mm_store_ss(sum, vacc_lo);
331   _mm256_zeroupper();
332 }
333