xref: /aosp_15_r20/external/ComputeLibrary/src/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2022-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
25 
26 #include "arm_compute/core/experimental/Types.h"
27 #include "arm_compute/runtime/CL/CLTensor.h"
28 #include "src/dynamic_fusion/runtime/gpu/cl/ClKernelRuntime.h"
29 #include "src/dynamic_fusion/sketch/gpu/GpuWorkloadSketchImpl.h"
30 #include "src/dynamic_fusion/sketch/gpu/GpuWorkloadSourceCode.h"
31 #include "support/Cast.h"
32 
33 #include <algorithm>
34 
35 namespace arm_compute
36 {
37 namespace experimental
38 {
39 namespace dynamic_fusion
40 {
41 namespace
42 {
43 /** Holder of any auxiliary @ref CLTensor required by a @ref GpuWorkloadSourceCode.
44  *
45  * @note The tensors are not allocated by default, and require the user to explicitly allocate them using the associated @ref TensorInfo and @ref AuxMemoryInfo
46  *
47  * @note This data holder must remain valid until the @ref ClWorkloadRuntime that uses it, is out of scope
48  */
49 class ClAuxTensors
50 {
51 public:
52     /** A view of a single auxiliary data and the associated @ref TensorInfo and @ref AuxMemoryInfo
53      */
54     struct DataView
55     {
56         DataView() = default;
DataViewarm_compute::experimental::dynamic_fusion::__anonb2ab80190111::ClAuxTensors::DataView57         DataView(CLTensor *tensor, const TensorInfo &tensor_info, const AuxMemoryInfo &memory_info)
58             : tensor{ tensor }, tensor_info{ tensor_info }, memory_info{ memory_info }
59         {
60         }
61         ~DataView()                     = default;
62         DataView(const DataView &other) = default;
63         DataView &operator=(const DataView &other) = default;
64         DataView(DataView &&other)                 = default;
65         DataView &operator=(DataView &&other) = default;
66         CLTensor     *tensor{};      /**< Pointer to the auxiliary tensor */
67         TensorInfo    tensor_info{}; /**< Associated tensor info */
68         AuxMemoryInfo memory_info{}; /**< Memory requirement */
69     };
70 
71     /** Get views of all auxiliary tensors. This is mainly used for allocating the auxiliary tensors. */
get_tensors()72     std::vector<DataView> get_tensors()
73     {
74         return _tensors;
75     }
get_tensors() const76     std::vector<DataView> get_tensors() const
77     {
78         return _tensors;
79     }
80 
81     friend Status create_aux_tensors(ClAuxTensors *aux_tensors, const GpuWorkloadSourceCode &code);
82 
83 private:
84     /** Add auxiliary tensor.
85      *
86      * @param[in] tensor_info @ref ITensorInfo of the auxiliary tensor
87      * @param[in] memory_info Memory requirements of the auxiliary tensor
88      *
89      * @return CLTensor*  Corresponding tensor memory if successfully added, otherwise nullptr
90      */
add_aux_tensor(const ITensorInfo & tensor_info,const AuxMemoryInfo & aux_memory_info)91     CLTensor *add_aux_tensor(const ITensorInfo &tensor_info, const AuxMemoryInfo &aux_memory_info)
92     {
93         const auto t_id             = tensor_info.id();
94         auto       find_tensor_pair = _owned_tensors.find(t_id);
95         if(find_tensor_pair != _owned_tensors.end())
96         {
97             return find_tensor_pair->second.get();
98         }
99         else
100         {
101             auto tensor        = std::make_unique<CLTensor>();
102             auto inserted_pair = _owned_tensors.emplace(t_id, std::move(tensor)).first;
103             auto new_tensor    = inserted_pair->second.get();
104             _tensors.emplace_back(new_tensor, tensor_info, aux_memory_info);
105             return new_tensor;
106         }
107     }
108 
109     std::map<ITensorInfo::Id, std::unique_ptr<CLTensor>> _owned_tensors{};
110     std::vector<DataView> _tensors{};
111 };
112 /** Construct auxiliary tensors required by @ref GpuWorkloadSourceCode
113  *
114  * @note This is the only recommended method for user to create @ref ClAuxTensors
115  *
116  * @param[out] aux_tensors Auxiliary tensors required by the workload code
117  * @param[in]  code        @ref GpuWorkloadSourceCode which all tensors bind to
118  *
119  * @return Status
120  */
create_aux_tensors(ClAuxTensors * aux_tensors,const GpuWorkloadSourceCode & code)121 Status create_aux_tensors(ClAuxTensors *aux_tensors, const GpuWorkloadSourceCode &code)
122 {
123     for(auto t_id : code.tensors())
124     {
125         // Get tensor object
126         const auto workload_arg  = code.query_tensor(t_id);
127         ICLTensor *tensor_object = nullptr;
128         if(workload_arg->memory_descriptor()->memory_type == MemoryType::Auxiliary)
129         {
130             // Create aux tensor CLTensor object
131             const TensorInfo tensor_info = *workload_arg->tensor_info();
132             ARM_COMPUTE_ERROR_ON(tensor_info.id() != t_id);
133             const auto aux_memory_info = workload_arg->memory_descriptor()->aux_memory_info;
134             tensor_object              = aux_tensors->add_aux_tensor(tensor_info, aux_memory_info);
135 
136             if(tensor_object == nullptr)
137             {
138                 return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Failed to construct an auxiliary tensor");
139             }
140         }
141     }
142     return Status{};
143 }
144 
145 /** A fast tensor lookup table for runtime tensor objects retrieval
146  */
147 class ClTensorLUT
148 {
149 public:
150     /** Find a tensor pack associated with the @ref UnitWorkloadId @p uwk_id
151      *
152      * @param[in] uwk_id @ref UnitWorkloadId associated with the tensor pack
153      *
154      * @return ITensorPack*
155      */
find_tensor_pack(UnitWorkloadId uwk_id)156     ITensorPack *find_tensor_pack(UnitWorkloadId uwk_id)
157     {
158         auto tensor_pack = _tensor_packs.find(uwk_id);
159         if(tensor_pack != _tensor_packs.end())
160         {
161             return &(tensor_pack->second);
162         }
163         return nullptr;
164     }
165     /** Get a tensor pack associated with @p uwk_id. Throws a exception if it cannot be found.
166      *
167      * @param[in] uwk_id @ref UnitWorkloadId associated with the tensor pack
168      *
169      * @return ITensorPack*
170      */
get_tensor_pack(UnitWorkloadId uwk_id)171     ITensorPack &get_tensor_pack(UnitWorkloadId uwk_id)
172     {
173         return _tensor_packs.at(uwk_id);
174     }
175 
176     friend Status create_tensor_lut(ClTensorLUT *tensor_lut, const GpuWorkloadSourceCode &code, const std::vector<CLTensor *> &user_tensors, const ClAuxTensors &aux_tensors);
177 
178 private:
179     /** Add a tensor pack and associate it with @ref UnitWorkloadId @p uwk_id
180      *
181      * @param[in] uwk_id      @ref UnitWorkloadId associated with the tensor pack
182      * @param[in] tensor_pack Tensor pack to be added
183      */
add_tensor_pack(UnitWorkloadId uwk_id,const ITensorPack & tensor_pack)184     void add_tensor_pack(UnitWorkloadId uwk_id, const ITensorPack &tensor_pack)
185     {
186         _tensor_packs[uwk_id] = tensor_pack;
187     }
188     std::map<UnitWorkloadId, ITensorPack> _tensor_packs{};
189 };
190 
191 /** Create a fast tensor lookup table for runtime tensor retrieval
192  *
193  * @param[out] tensor_lut   @ref ClTensorLUT used by the runtime to feed tensor memories to underlying kernels
194  * @param[in]  code         @ref GpuWorkloadSourceCode which all tensors bind to
195  * @param[in]  user_tensors User tensors
196  * @param[in]  aux_tensors  Auxiliary tensors required by the workload code
197  *
198  * @return Status
199  */
create_tensor_lut(ClTensorLUT * tensor_lut,const GpuWorkloadSourceCode & code,const std::vector<CLTensor * > & user_tensors,const ClAuxTensors & aux_tensors)200 Status create_tensor_lut(ClTensorLUT *tensor_lut, const GpuWorkloadSourceCode &code, const std::vector<CLTensor *> &user_tensors, const ClAuxTensors &aux_tensors)
201 {
202     // Combine user tensors and aux tensors
203     std::map<ITensorInfo::Id, CLTensor *> tensor_map;
204     for(auto tensor : user_tensors)
205     {
206         const auto t_id = tensor->info()->id();
207 
208         if(tensor_map.find(t_id) != tensor_map.end())
209         {
210             // In case of elementwise in-place: give another Id to the In/Out tensor when passed again
211             std::vector<ITensorInfo::Id> ids;
212             for(auto &t : tensor_map)
213             {
214                 ids.push_back(t.first);
215             }
216             ITensorInfo::Id new_id = *std::max_element(ids.begin(), ids.end()) + 1;
217             tensor_map[new_id]     = tensor;
218         }
219         else
220         {
221             tensor_map[t_id] = tensor;
222         }
223     }
224     for(const auto &data : aux_tensors.get_tensors())
225     {
226         const auto t_id   = data.tensor_info.id();
227         const auto tensor = data.tensor;
228         if(tensor_map.find(t_id) != tensor_map.end())
229         {
230             return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Clashing tensor ids");
231         }
232         tensor_map[t_id] = tensor;
233     }
234 
235     // Add tensor objects into corresponding tensor packs
236     for(auto id_tensor : tensor_map)
237     {
238         const auto t_id          = id_tensor.first;
239         const auto tensor_object = id_tensor.second;
240         if(tensor_object == nullptr)
241         {
242             return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Trying to add a nullptr into the tensor packs");
243         }
244         if(tensor_object->allocator()->info().total_size() == 0U)
245         {
246             return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "No allocated memory found in tensor");
247         }
248 
249         for(auto uwk_id : code.get_unit_workloads_from_tensor(t_id))
250         {
251             ITensorPack *tensor_pack = tensor_lut->find_tensor_pack(uwk_id);
252             if(tensor_pack == nullptr)
253             {
254                 tensor_lut->add_tensor_pack(uwk_id, ITensorPack{ { t_id, tensor_object } });
255             }
256             else
257             {
258                 tensor_pack->add_tensor(t_id, tensor_object);
259             }
260         }
261     }
262 
263     return Status{};
264 }
265 
266 } // namespace
267 
268 struct ClWorkloadRuntime::Implementation
269 {
270     std::map<UnitWorkloadId, std::unique_ptr<ClKernelRuntime>> _kernels{};
271     std::map<UnitWorkloadId, std::unique_ptr<ClKernelRuntime>> _kernels_prep{};
272     bool                  _is_configured{ false };
273     bool                  _is_prepared{ false };
274     ClTensorLUT           _tensor_lut{};
275     ClAuxTensors          _aux_tensors{};
276     GpuWorkloadSourceCode _source_code{};
277 };
278 
ClWorkloadRuntime()279 ClWorkloadRuntime::ClWorkloadRuntime()
280     : _impl{ std::make_unique<Implementation>() }
281 {
282 }
283 
284 ClWorkloadRuntime::~ClWorkloadRuntime() = default;
285 
configure(const GpuWorkloadSketch & sketch)286 Status ClWorkloadRuntime::configure(const GpuWorkloadSketch &sketch)
287 {
288     ARM_COMPUTE_RETURN_ERROR_ON_MSG(_impl->_is_configured, "ClWorkloadRuntime cannot be re-configured");
289     ARM_COMPUTE_RETURN_ERROR_ON_MSG(sketch.gpu_context()->gpu_language() != GpuLanguage::OpenCL, "ClWorkloadRuntime cannot be configured with non-OpenCL workload sketch");
290     // Generate source code
291     _impl->_source_code = sketch.implementation().generate_source_code();
292     // Configure unit workload from source code
293     for(auto uwk_id : _impl->_source_code.unit_workloads())
294     {
295         const auto work  = _impl->_source_code.query_unit_workload(uwk_id);
296         const auto stage = work.stage().stage;
297         auto       k     = std::make_unique<ClKernelRuntime>();
298         k->configure(*sketch.gpu_context()->cl_compile_context(), work.code());
299 
300         switch(stage)
301         {
302             case UnitWorkloadStage::Stage::Run:
303             {
304                 _impl->_kernels.emplace(work.id(), std::move(k));
305                 break;
306             }
307             case UnitWorkloadStage::Stage::Prepare:
308             {
309                 _impl->_kernels_prep.emplace(work.id(), std::move(k));
310                 break;
311             }
312             default:
313             {
314                 ARM_COMPUTE_ERROR("Invalid unit workload stage");
315             }
316         }
317     }
318     // Create auxiliary tensor objects
319     create_aux_tensors(&_impl->_aux_tensors, _impl->_source_code);
320     _impl->_is_configured = true;
321     return Status{};
322 }
323 
prepare()324 void ClWorkloadRuntime::prepare()
325 {
326     if(!_impl->_is_prepared)
327     {
328         for(auto &id_kernel_pair : _impl->_kernels_prep)
329         {
330             const bool flush_queue = false;
331             const auto uwk_id      = id_kernel_pair.first;
332             auto       kernel      = id_kernel_pair.second.get();
333             CLScheduler::get().enqueue_op(*kernel, _impl->_tensor_lut.get_tensor_pack(uwk_id), flush_queue);
334         }
335 
336         _impl->_is_prepared = true;
337     }
338 }
339 
run(const std::vector<CLTensor * > & tensors)340 Status ClWorkloadRuntime::run(const std::vector<CLTensor *> &tensors)
341 {
342     // Need to create the tensor lut in every run, unless the user can guarantee the binding remains fixed,
343     // in which case the lut can be cached during prepare
344     const auto st = create_tensor_lut(&_impl->_tensor_lut, _impl->_source_code, tensors, _impl->_aux_tensors);
345     ARM_COMPUTE_RETURN_ON_ERROR(st);
346     prepare();
347     for(auto &id_kernel_pair : _impl->_kernels)
348     {
349         // Flush the command queue on the last kernel
350         const bool flush_queue = false;
351         const auto uwk_id      = id_kernel_pair.first;
352         auto       kernel      = id_kernel_pair.second.get();
353         CLScheduler::get().enqueue_op(*kernel, _impl->_tensor_lut.get_tensor_pack(uwk_id), flush_queue);
354     }
355     return Status{};
356 }
357 
get_auxiliary_tensors()358 std::vector<std::tuple<CLTensor *, TensorInfo, AuxMemoryInfo>> ClWorkloadRuntime::get_auxiliary_tensors()
359 {
360     std::vector<std::tuple<CLTensor *, TensorInfo, AuxMemoryInfo>> aux_tensors;
361     for(const auto &data : _impl->_aux_tensors.get_tensors())
362     {
363         aux_tensors.emplace_back(data.tensor, data.tensor_info, data.memory_info);
364     }
365     return aux_tensors;
366 }
367 } // namespace dynamic_fusion
368 } // namespace experimental
369 } // namespace arm_compute
370