xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/operators/internal/CpuGemmAssemblyDispatch.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CPU_INTERNAL_CPU_GEMM_ASSEMBLY_DISPATCH_H
25 #define ARM_COMPUTE_CPU_INTERNAL_CPU_GEMM_ASSEMBLY_DISPATCH_H
26 
27 #include "src/core/common/Macros.h"
28 #include "src/cpu/ICpuOperator.h"
29 
30 namespace arm_compute
31 {
32 namespace cpu
33 {
34 /* Convolution method supported by the assembly gemm interface */
35 enum class AsmConvMethod
36 {
37     Im2Col,
38     Indirect,
39     Conv
40 };
41 
42 struct AsmGemmInfo
43 {
44     AsmConvMethod             method{ AsmConvMethod::Im2Col };
45     PadStrideInfo             ps_info{};
46     ActivationLayerInfo       activation_info{};
47     GEMMLowpOutputStageInfo   output_stage{};
48     bool                      negated_offsets{ true };
49     bool                      reinterpret_input_as_3d{ false };
50     bool                      depth_output_gemm3d{ false };
51     int64_t                   padding_top{ 0 };
52     int64_t                   padding_left{ 0 };
53     float                     padding_value{ 0.f };
54     bool                      fast_mode{ false };
55     bool                      fixed_format{ false };
56     arm_compute::WeightFormat weight_format{ arm_compute::WeightFormat::UNSPECIFIED };
57     bool                      reshape_b_only_on_first_run{ true };
58 };
59 
60 /** Assembly kernel glue */
61 class CpuGemmAssemblyDispatch : public ICpuOperator
62 {
63 public:
64     /** Constructor */
65     CpuGemmAssemblyDispatch();
66     /** Defautl destructor */
67     ~CpuGemmAssemblyDispatch() = default;
68 
69     ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmAssemblyDispatch);
70 
71     class IFallback
72     {
73     public:
74         virtual void run(ITensorPack &tensors)                              = 0;
75         virtual void prepare(ITensorPack &tensors)                          = 0;
76         virtual experimental::MemoryRequirements workspace() const          = 0;
77         virtual bool                             is_configured() const      = 0;
78         virtual bool                             isVarWeightsKernel() const = 0;
79         virtual ~IFallback()                                                = default;
80     };
81 
82 public:
83     /** If supported create a Compute Library function else fallback to the arm_gemm function.
84      *
85      * @param[in]  a    Input tensor (Matrix A)
86      * @param[in]  b    Input tensor (Matrix B)
87      * @param[in]  c    Input tensor (Matrix C) used to pass the bias for quantized calculations
88      * @param[out] d    Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0.
89      * @param[in]  info GEMM meta-data
90      */
91     void configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, const AsmGemmInfo &info);
92 
93     /** Indicates whether or not this function can be used to process the given parameters.
94      *
95      * @param[in] a    Input tensor info (Matrix A)
96      * @param[in] b    Input tensor info (Matrix B)
97      * @param[in] c    Input tensor info (Matrix C) used to pass the bias for quantized calculations
98      * @param[in] d    Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0.
99      * @param[in] info GEMM meta-data
100      *
101      * @return a status.
102      */
103     static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, const AsmGemmInfo &info);
104 
105     /** Indicates whether or not there is an optimal assembly implementation that can be used to process the given parameters.
106      *
107      * This method has the same use of @ref
108      * NEGEMMConvolutionLayer::has_opt_impl, with the only caveat that
109      * the value of arm_compute::WeightFormat need to be passed via the
110      * parameter info.
111      *
112      * @return a status.
113      */
114     static Status has_opt_impl(arm_compute::WeightFormat &weight_format, const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, const AsmGemmInfo &info);
115     /** Checks if activation is supported by the gemm assembly dispatcher
116      *
117      * @param[in] activation Activation to check
118      *
119      * @return True if activation is supported else false
120      */
121     static bool is_activation_supported(const ActivationLayerInfo &activation);
122     /** Was the function successfully configured ?
123      *
124      * @return True if the function is configured and ready to run
125      */
126     bool is_configured() const;
127     /** Indicates if the convolution executes in variable weights mode.
128      *
129      * Similar to @ref CpuGemm::isVarWeightsKernel
130      */
isVarWeightsKernel()131     bool isVarWeightsKernel() const
132     {
133         return _arm_gemm && _arm_gemm->isVarWeightsKernel();
134     }
135 
136     // Inherited methods overridden:
137     void prepare(ITensorPack &tensors) override;
138     void run(ITensorPack &tensors) override;
139     experimental::MemoryRequirements workspace() const override;
140 
141 private:
142     std::unique_ptr<IFallback> _arm_gemm; /**< Interface for the arm_gemm fallback */
143 };
144 } // namespace cpu
145 } // namespace arm_compute
146 #endif /* ARM_COMPUTE_CPU_INTERNAL_CPU_GEMM_ASSEMBLY_DISPATCH_H */
147