xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/fuse_batch_normalization/nhwc/neon/impl.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/fuse_batch_normalization/nhwc/neon/impl.h"
25 
26 namespace arm_compute
27 {
28 namespace cpu
29 {
30 template <typename T>
fused_batch_normalization_dwc_nhwc(const ITensor * dwc_weights,const ITensor * dwc_bias,ITensor * fused_weights,ITensor * fused_bias,const ITensor * bn_mean,const ITensor * bn_var,const ITensor * bn_beta,const ITensor * bn_gamma,float epsilon,const Window & window)31 void fused_batch_normalization_dwc_nhwc(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias,
32                                         const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
33 {
34     using ScalarType   = T;
35     const int size     = 16 / dwc_weights->info()->element_size();
36     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
37 
38     const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights);
39     const bool run_in_place_bias    = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias);
40 
41     // Set build options
42     Window win = window;
43     win.set(Window::DimX, Window::Dimension(0, 1, 1));
44 
45     const int  window_step_x  = size;
46     const auto window_start_x = static_cast<int>(window.x().start());
47     const auto window_end_x   = static_cast<int>(window.x().end());
48 
49     Iterator dwc_w_in(dwc_weights, win);
50     Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win);
51 
52     const auto dwc_bias_in  = (dwc_bias != nullptr ? reinterpret_cast<ScalarType *>(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
53     auto       dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
54 
55     const auto input_mean  = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
56     const auto input_var   = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
57     const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
58     const auto input_beta  = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
59 
60     auto       mean_vec     = wrapper::vdup_n(ScalarType(0), ExactTagType{});
61     auto       var_vec      = wrapper::vdup_n(ScalarType(0), ExactTagType{});
62     auto       gamma_vec    = wrapper::vdup_n(ScalarType(1), ExactTagType{});
63     auto       beta_vec     = wrapper::vdup_n(ScalarType(0), ExactTagType{});
64     auto       rvar_vec     = wrapper::vdup_n(ScalarType(0), ExactTagType{});
65     auto       dwc_bias_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
66     const auto epsilon_vec  = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
67 
68     auto gamma              = ScalarType(1.0);
69     auto beta               = ScalarType(0.0);
70     auto dwc_bias_in_scalar = ScalarType(0);
71 
72     execute_window_loop(win, [&](const Coordinates & id)
73     {
74         int x = window_start_x;
75         for(; x <= (window_end_x - window_step_x); x += window_step_x)
76         {
77             var_vec = wrapper::vloadq(input_var + x);
78             if(input_gamma != nullptr)
79             {
80                 gamma_vec = wrapper::vloadq(input_gamma + x);
81             }
82 
83             if((id[2] == 0) && (id[1] == 0))
84             {
85                 mean_vec = wrapper::vloadq(input_mean + x);
86 
87                 // Construct vectors
88                 if(input_beta != nullptr)
89                 {
90                     beta_vec = wrapper::vloadq(input_beta + x);
91                 }
92 
93                 if(dwc_bias_in != nullptr)
94                 {
95                     dwc_bias_vec = wrapper::vloadq(dwc_bias_in + x);
96                 }
97 
98                 auto dwc_bias_tmp_vec = wrapper::vmul(wrapper::vsub(dwc_bias_vec, mean_vec), wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)));
99                 dwc_bias_tmp_vec      = wrapper::vadd(wrapper::vmul(dwc_bias_tmp_vec, gamma_vec), beta_vec);
100                 wrapper::vstore(dwc_bias_out + x, dwc_bias_tmp_vec);
101             }
102 
103             auto dwc_w_in_ptr  = reinterpret_cast<const ScalarType *>(dwc_w_in.ptr());
104             auto dwc_w_out_ptr = reinterpret_cast<ScalarType *>(dwc_w_out.ptr());
105 
106             auto wn  = wrapper::vloadq(dwc_w_in_ptr + x);
107             rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
108             wn       = wrapper::vmul(wn, rvar_vec);
109             wn       = wrapper::vmul(wn, gamma_vec);
110 
111             // Store results
112             wrapper::vstore(dwc_w_out_ptr + x, wn);
113         }
114 
115         // Compute left-over elements
116         for(; x < window_end_x; ++x)
117         {
118             auto var = input_var[x];
119             if(input_gamma != nullptr)
120             {
121                 gamma = input_gamma[x];
122             }
123 
124             if(id[2] == 0 && id[1] == 0)
125             {
126                 auto mean = input_mean[x];
127                 if(input_beta != nullptr)
128                 {
129                     beta = input_beta[x];
130                 }
131                 if(dwc_bias_in != nullptr)
132                 {
133                     dwc_bias_in_scalar = dwc_bias_in[x];
134                 }
135 
136                 auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
137                 dwc_bias_out[x]          = (dwc_bias_tmp_scalar * gamma) + beta;
138             }
139 
140             const auto dwc_w_in_ptr  = reinterpret_cast<const ScalarType *>(dwc_w_in.ptr());
141             auto       dwc_w_out_ptr = reinterpret_cast<ScalarType *>(dwc_w_out.ptr());
142 
143             *(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
144         }
145     },
146     dwc_w_in, dwc_w_out);
147 }
148 
149 template void fused_batch_normalization_dwc_nhwc<float32_t>(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias,
150                                                             const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window);
151 
152 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
153 template void fused_batch_normalization_dwc_nhwc<float16_t>(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias,
154                                                             const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window);
155 #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
156 
157 } // namespace cpu
158 } // namespace arm_compute
159