xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/conv3d/neon/list.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef SRC_CORE_NEON_KERNELS_CONV3D_LIST_H
25 #define SRC_CORE_NEON_KERNELS_CONV3D_LIST_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/core/utils/misc/Traits.h"
29 #include "arm_compute/runtime/FunctionDescriptors.h"
30 #include "src/core/NEON/wrapper/wrapper.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "src/cpu/kernels/conv3d/neon/quantized.h"
33 
34 namespace arm_compute
35 {
36 namespace cpu
37 {
38 template <typename T>
directconv3d_float_neon_ndhwc(const ITensor * src0,const ITensor * src1,const ITensor * src2,ITensor * dst,const Conv3dInfo & conv_info,const Window & window)39 void directconv3d_float_neon_ndhwc(const ITensor *src0, const ITensor *src1, const ITensor *src2, ITensor *dst, const Conv3dInfo &conv_info, const Window &window)
40 {
41     const ITensor *src     = src0;
42     const ITensor *weights = src1;
43     const ITensor *biases  = src2;
44 
45     using vtype                                = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
46     using vector_type                          = typename vtype::type;
47     using tag_type                             = typename vtype::tag_type;
48     constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
49 
50     // Scalar quantities (N D H W Cin)
51     const int element_size   = src->info()->element_size();
52     const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
53     const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
54     const int input_stride_d = src->info()->strides_in_bytes()[3] / element_size;
55     const int input_stride_n = src->info()->strides_in_bytes()[4] / element_size;
56     const int input_dim_w    = src->info()->dimension(1);
57     const int input_dim_h    = src->info()->dimension(2);
58     const int input_dim_d    = src->info()->dimension(3);
59 
60     // Kernel info (D H W Cin Cout)
61     const unsigned int kernel_stride_w = weights->info()->strides_in_bytes()[2] / element_size;
62     const unsigned int kernel_stride_h = weights->info()->strides_in_bytes()[3] / element_size;
63     const unsigned int kernel_stride_d = weights->info()->strides_in_bytes()[4] / element_size;
64     const int          kernel_dim_w    = weights->info()->dimension(2);
65     const int          kernel_dim_h    = weights->info()->dimension(3);
66     const int          kernel_dim_d    = weights->info()->dimension(4);
67 
68     // Convolution padding and stride
69     const int conv_pad_top   = conv_info.padding.top;
70     const int conv_pad_left  = conv_info.padding.left;
71     const int conv_pad_front = conv_info.padding.front;
72     const int conv_stride_w  = conv_info.stride.width;
73     const int conv_stride_h  = conv_info.stride.height;
74     const int conv_stride_d  = conv_info.stride.depth;
75 
76     // Setup input window for the output iterator
77     Window window_out = window;
78     window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
79 
80     // Setup input window for the weights iterator
81     Window window_w = calculate_max_window(*weights->info(), Steps());
82     window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
83     window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
84     window_w.set(Window::DimW, Window::Dimension(0, 1, 1));
85     window_w.set(4, Window::Dimension(0, 1, 1));
86 
87     Iterator out(dst, window_out);
88     Iterator wei(weights, window_w);
89 
90     const T *biases_ptr = nullptr;
91     if(biases != nullptr)
92     {
93         biases_ptr = reinterpret_cast<T *>(biases->buffer() + biases->info()->offset_first_element_in_bytes());
94     }
95     execute_window_loop(window_out, [&](const Coordinates & id)
96     {
97         // We are computing the theoretical input starting points
98         const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
99         const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
100         const int in_d_start_t = static_cast<int>(id[3]) * conv_stride_d - conv_pad_front;
101         const int in_w_end_t   = in_w_start_t + kernel_dim_w;
102         const int in_h_end_t   = in_h_start_t + kernel_dim_h;
103         const int in_d_end_t   = in_d_start_t + kernel_dim_d;
104 
105         // We are computing the valid initial and ending input points by checking the borders
106         const int in_w_start = std::max(in_w_start_t, 0);
107         const int in_h_start = std::max(in_h_start_t, 0);
108         const int in_d_start = std::max(in_d_start_t, 0);
109         const int in_w_end   = std::min(in_w_end_t, input_dim_w);
110         const int in_h_end   = std::min(in_h_end_t, input_dim_h);
111         const int in_d_end   = std::min(in_d_end_t, input_dim_d);
112 
113         // We use the input points to select the valid weight points to use
114         const int wei_w_start = in_w_start - in_w_start_t;
115         const int wei_h_start = in_h_start - in_h_start_t;
116         const int wei_d_start = in_d_start - in_d_start_t;
117         const int wei_w_end   = kernel_dim_w - (in_w_end_t - in_w_end);
118         const int wei_h_end   = kernel_dim_h - (in_h_end_t - in_h_end);
119         const int wei_d_end   = kernel_dim_d - (in_d_end_t - in_d_end);
120 
121         const int      index_c_out_end = weights->info()->dimension(0);
122         const int      index_c_in_end  = weights->info()->dimension(1);
123         const T *const in_ptr_start    = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[4] * input_stride_n;
124 
125         execute_window_loop(window_w, [&](const Coordinates & id_w)
126         {
127             /*
128             * This is the loop in the weights, and it goes along OFM (output feature map)
129             */
130             const auto weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
131             T          out_temp          = static_cast<T>(0);
132             T         *out_ptr           = reinterpret_cast<T *>(out.ptr());
133             for(int index_wei_d = wei_d_start, index_in_d = in_d_start; index_wei_d < wei_d_end; ++index_wei_d, ++index_in_d)
134             {
135                 const auto in_ptr_d      = in_ptr_start + index_in_d * input_stride_d;
136                 const auto weights_ptr_d = weights_ptr_start + index_wei_d * kernel_stride_d;
137                 for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
138                 {
139                     const T *const in_ptr_row      = in_ptr_d + index_in_h * input_stride_h;
140                     const T *const weights_ptr_row = weights_ptr_d + index_wei_h * kernel_stride_h;
141                     for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
142                     {
143                         const T    *in_ptr_mover      = in_ptr_row + index_in_w * input_stride_w;
144                         const T    *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
145                         int         index_c_in        = 0;
146                         vector_type out_temp_vec      = wrapper::vdup_n(static_cast<T>(0), tag_type());
147                         vector_type w_vec             = wrapper::vdup_n(static_cast<T>(0), tag_type());
148                         for(; index_c_in <= index_c_in_end - num_elems_read_per_iteration;
149                             index_c_in += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
150                         {
151                             const auto src_vec = wrapper::vloadq(in_ptr_mover);
152                             //Load Cin weights
153                             for(int k = 0; k < num_elems_read_per_iteration; ++k, weights_ptr_mover += index_c_out_end)
154                             {
155                                 w_vec = wrapper::vsetlane(*weights_ptr_mover, w_vec, k);
156                             }
157                             out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
158                         }
159                         out_temp += vreduce(out_temp_vec);
160                         for(; index_c_in < index_c_in_end; ++index_c_in, ++in_ptr_mover, weights_ptr_mover += index_c_out_end)
161                         {
162                             const auto src_val = *(in_ptr_mover);
163                             const auto w_val   = *(weights_ptr_mover);
164                             out_temp += src_val * w_val;
165                         }
166                     }
167                 }
168             }
169             *(reinterpret_cast<T *>(out_ptr + id_w[0])) = (biases_ptr != nullptr) ? out_temp + biases_ptr[id_w[0]] : out_temp;
170         },
171         wei);
172     },
173     out);
174 }
175 
176 } // namespace cpu
177 } // namespace arm_compute
178 #endif // SRC_CORE_NEON_KERNELS_CONV3D_LIST_H