xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/boundingboxtransform/generic/neon/impl.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/boundingboxtransform/generic/neon/impl.h"
25 namespace arm_compute
26 {
27 namespace cpu
28 {
bounding_box_transform_qsymm16(const ITensor * boxes,ITensor * pred_boxes,const ITensor * deltas,BoundingBoxTransformInfo bbinfo,const Window & window)29 void bounding_box_transform_qsymm16(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window)
30 
31 {
32     const size_t num_classes  = deltas->info()->tensor_shape()[0] >> 2;
33     const size_t deltas_width = deltas->info()->tensor_shape()[0];
34     const int    img_h        = std::floor(bbinfo.img_height() / bbinfo.scale() + 0.5f);
35     const int    img_w        = std::floor(bbinfo.img_width() / bbinfo.scale() + 0.5f);
36 
37     const auto scale_after  = (bbinfo.apply_scale() ? bbinfo.scale() : 1.f);
38     const auto scale_before = bbinfo.scale();
39     const auto offset       = (bbinfo.correct_transform_coords() ? 1.f : 0.f);
40 
41     auto pred_ptr  = reinterpret_cast<uint16_t *>(pred_boxes->buffer() + pred_boxes->info()->offset_first_element_in_bytes());
42     auto delta_ptr = reinterpret_cast<uint8_t *>(deltas->buffer() + deltas->info()->offset_first_element_in_bytes());
43 
44     const auto boxes_qinfo  = boxes->info()->quantization_info().uniform();
45     const auto deltas_qinfo = deltas->info()->quantization_info().uniform();
46     const auto pred_qinfo   = pred_boxes->info()->quantization_info().uniform();
47 
48     Iterator box_it(boxes, window);
49     execute_window_loop(window, [&](const Coordinates & id)
50     {
51         const auto  ptr    = reinterpret_cast<uint16_t *>(box_it.ptr());
52         const auto  b0     = dequantize_qasymm16(*ptr, boxes_qinfo);
53         const auto  b1     = dequantize_qasymm16(*(ptr + 1), boxes_qinfo);
54         const auto  b2     = dequantize_qasymm16(*(ptr + 2), boxes_qinfo);
55         const auto  b3     = dequantize_qasymm16(*(ptr + 3), boxes_qinfo);
56         const float width  = (b2 / scale_before) - (b0 / scale_before) + 1.f;
57         const float height = (b3 / scale_before) - (b1 / scale_before) + 1.f;
58         const float ctr_x  = (b0 / scale_before) + 0.5f * width;
59         const float ctr_y  = (b1 / scale_before) + 0.5f * height;
60         for(size_t j = 0; j < num_classes; ++j)
61         {
62             // Extract deltas
63             const size_t delta_id = id.y() * deltas_width + 4u * j;
64             const float  dx       = dequantize_qasymm8(delta_ptr[delta_id], deltas_qinfo) / bbinfo.weights()[0];
65             const float  dy       = dequantize_qasymm8(delta_ptr[delta_id + 1], deltas_qinfo) / bbinfo.weights()[1];
66             float        dw       = dequantize_qasymm8(delta_ptr[delta_id + 2], deltas_qinfo) / bbinfo.weights()[2];
67             float        dh       = dequantize_qasymm8(delta_ptr[delta_id + 3], deltas_qinfo) / bbinfo.weights()[3];
68             // Clip dw and dh
69             dw = std::min(dw, bbinfo.bbox_xform_clip());
70             dh = std::min(dh, bbinfo.bbox_xform_clip());
71             // Determine the predictions
72             const float pred_ctr_x = dx * width + ctr_x;
73             const float pred_ctr_y = dy * height + ctr_y;
74             const float pred_w     = std::exp(dw) * width;
75             const float pred_h     = std::exp(dh) * height;
76             // Store the prediction into the output tensor
77             pred_ptr[delta_id]     = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_x - 0.5f * pred_w, 0.f, img_w - 1.f), pred_qinfo);
78             pred_ptr[delta_id + 1] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_y - 0.5f * pred_h, 0.f, img_h - 1.f), pred_qinfo);
79             pred_ptr[delta_id + 2] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_x + 0.5f * pred_w - offset, 0.f, img_w - 1.f), pred_qinfo);
80             pred_ptr[delta_id + 3] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_y + 0.5f * pred_h - offset, 0.f, img_h - 1.f), pred_qinfo);
81         }
82     },
83     box_it);
84 }
85 
86 template <typename T>
bounding_box_transform(const ITensor * boxes,ITensor * pred_boxes,const ITensor * deltas,BoundingBoxTransformInfo bbinfo,const Window & window)87 void bounding_box_transform(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window)
88 {
89     const size_t num_classes  = deltas->info()->tensor_shape()[0] >> 2;
90     const size_t deltas_width = deltas->info()->tensor_shape()[0];
91     const int    img_h        = std::floor(bbinfo.img_height() / bbinfo.scale() + 0.5f);
92     const int    img_w        = std::floor(bbinfo.img_width() / bbinfo.scale() + 0.5f);
93 
94     const auto scale_after  = (bbinfo.apply_scale() ? T(bbinfo.scale()) : T(1));
95     const auto scale_before = T(bbinfo.scale());
96     ARM_COMPUTE_ERROR_ON(scale_before <= 0);
97     const auto offset = (bbinfo.correct_transform_coords() ? T(1.f) : T(0.f));
98 
99     auto pred_ptr  = reinterpret_cast<T *>(pred_boxes->buffer() + pred_boxes->info()->offset_first_element_in_bytes());
100     auto delta_ptr = reinterpret_cast<T *>(deltas->buffer() + deltas->info()->offset_first_element_in_bytes());
101 
102     Iterator box_it(boxes, window);
103     execute_window_loop(window, [&](const Coordinates & id)
104     {
105         const auto ptr    = reinterpret_cast<T *>(box_it.ptr());
106         const auto b0     = *ptr;
107         const auto b1     = *(ptr + 1);
108         const auto b2     = *(ptr + 2);
109         const auto b3     = *(ptr + 3);
110         const T    width  = (b2 / scale_before) - (b0 / scale_before) + T(1.f);
111         const T    height = (b3 / scale_before) - (b1 / scale_before) + T(1.f);
112         const T    ctr_x  = (b0 / scale_before) + T(0.5f) * width;
113         const T    ctr_y  = (b1 / scale_before) + T(0.5f) * height;
114         for(size_t j = 0; j < num_classes; ++j)
115         {
116             // Extract deltas
117             const size_t delta_id = id.y() * deltas_width + 4u * j;
118             const T      dx       = delta_ptr[delta_id] / T(bbinfo.weights()[0]);
119             const T      dy       = delta_ptr[delta_id + 1] / T(bbinfo.weights()[1]);
120             T            dw       = delta_ptr[delta_id + 2] / T(bbinfo.weights()[2]);
121             T            dh       = delta_ptr[delta_id + 3] / T(bbinfo.weights()[3]);
122             // Clip dw and dh
123             dw = std::min(dw, T(bbinfo.bbox_xform_clip()));
124             dh = std::min(dh, T(bbinfo.bbox_xform_clip()));
125             // Determine the predictions
126             const T pred_ctr_x = dx * width + ctr_x;
127             const T pred_ctr_y = dy * height + ctr_y;
128             const T pred_w     = std::exp(dw) * width;
129             const T pred_h     = std::exp(dh) * height;
130             // Store the prediction into the output tensor
131             pred_ptr[delta_id]     = scale_after * utility::clamp<T>(pred_ctr_x - T(0.5f) * pred_w, T(0), T(img_w - 1));
132             pred_ptr[delta_id + 1] = scale_after * utility::clamp<T>(pred_ctr_y - T(0.5f) * pred_h, T(0), T(img_h - 1));
133             pred_ptr[delta_id + 2] = scale_after * utility::clamp<T>(pred_ctr_x + T(0.5f) * pred_w - offset, T(0), T(img_w - 1));
134             pred_ptr[delta_id + 3] = scale_after * utility::clamp<T>(pred_ctr_y + T(0.5f) * pred_h - offset, T(0), T(img_h - 1));
135         }
136     },
137     box_it);
138 }
139 
140 template void bounding_box_transform<float>(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window);
141 
142 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
143 template void bounding_box_transform<float16_t>(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window);
144 #endif //defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
145 } // namespace cpu
146 } // namespace arm_compute