1 /*
2 * Copyright (c) 2020-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/core/Helpers.h"
25 #include "arm_compute/core/Window.h"
26 #include "src/core/NEON/NEAsymm.h"
27 #include "src/core/NEON/NEMath.h"
28 #include "src/core/NEON/wrapper/wrapper.h"
29
30 #include <arm_neon.h>
31 #include <cmath>
32 #include <cstddef>
33
34 namespace arm_compute
35 {
36 namespace cpu
37 {
neon_qasymm8_signed_activation(const ITensor * src,ITensor * dst,const ActivationLayerInfo & act_info,const Window & window)38 void neon_qasymm8_signed_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window)
39 {
40 constexpr int window_step_x = 16;
41 const auto window_start_x = static_cast<int>(window.x().start());
42 const auto window_end_x = static_cast<int>(window.x().end());
43 const ActivationLayerInfo::ActivationFunction act = act_info.activation();
44
45 Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
46 win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
47
48 Iterator input(src, win_collapsed);
49 Iterator output(dst, win_collapsed);
50
51 const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
52 const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
53 const qasymm8x16_signed_t va = vdupq_n_s8(quantize_qasymm8_signed(act_info.a(), qi_in));
54 const qasymm8x16_signed_t vb = vdupq_n_s8(quantize_qasymm8_signed(act_info.b(), qi_in));
55 const qasymm8_signed_t a = quantize_qasymm8_signed(act_info.a(), qi_in);
56 const qasymm8_signed_t b = quantize_qasymm8_signed(act_info.b(), qi_in);
57 const qasymm8_signed_t const_0 = quantize_qasymm8_signed(0.f, qi_in);
58 const qasymm8x16_signed_t vconst_0 = vdupq_n_s8(const_0);
59 #ifndef __aarch64__
60 const auto vconst_1 = vdupq_n_f32(1.f);
61 const auto vconst_0_f32 = vdupq_n_f32(0.f);
62 #endif // __aarch64__
63 const float32x4_t va_f32 = vdupq_n_f32(act_info.a());
64 const float32x4_t vb_f32 = vdupq_n_f32(act_info.b());
65 const float a_f32 = act_info.a();
66 const float b_f32 = act_info.b();
67 const auto const_6_f32 = vdupq_n_f32(6.f);
68 const auto const_0_f32 = vdupq_n_f32(0.f);
69 const auto const_3_f32 = vdupq_n_f32(3.f);
70 const auto const_inv_6_f32 = vdupq_n_f32(0.166666667f);
71
72 // Initialise scale/offset for re-quantization
73 float s = qi_in.scale / qi_out.scale;
74 float o = -qi_in.offset * s + qi_out.offset;
75 float32x4_t vs = vdupq_n_f32(s);
76 float32x4_t vo = vdupq_n_f32(o);
77
78 execute_window_loop(win_collapsed, [&](const Coordinates &)
79 {
80 const auto input_ptr = reinterpret_cast<const qasymm8_signed_t *>(input.ptr());
81 const auto output_ptr = reinterpret_cast<qasymm8_signed_t *>(output.ptr());
82
83 wrapper::traits::neon_bitvector_t<qasymm8_signed_t, wrapper::traits::BitWidth::W128> tmp;
84
85 // Compute S elements per iteration
86 int x = window_start_x;
87 for(; x <= (window_end_x - window_step_x); x += window_step_x)
88 {
89 const auto vin = wrapper::vloadq(input_ptr + x);
90 if(act == ActivationLayerInfo::ActivationFunction::RELU)
91 {
92 // Perform activation
93 tmp = vmaxq_s8(vconst_0, vin);
94 // Re-quantize to new output space
95 tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
96 }
97 else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
98 {
99 // Perform activation
100 tmp = vminq_s8(va, vmaxq_s8(vconst_0, vin));
101 // Re-quantize to new output space
102 tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
103 }
104 else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
105 {
106 // Perform activation
107 tmp = vminq_s8(va, vmaxq_s8(vb, vin));
108 // Re-quantize to new output space
109 tmp = vmlaq_qasymm8_signed(tmp, vs, vo);
110 }
111 #ifndef __aarch64__ // LUT-based implementation is used for aarch64 instead.
112 else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
113 {
114 // De-quantize
115 const auto vin_deq = vdequantize(vin, qi_in);
116 // Perform activation
117 const float32x4x4_t tmp_dep =
118 {
119 {
120 wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
121 wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
122 wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))),
123 wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))),
124 }
125 };
126 // Re-quantize to new output space
127 tmp = vquantize_signed(tmp_dep, qi_out);
128 }
129 #endif // __aarch64__
130 else if(act == ActivationLayerInfo::ActivationFunction::TANH)
131 {
132 // De-quantize
133 const auto vin_deq = vdequantize(vin, qi_in);
134 // Perform activation
135 const float32x4x4_t tmp_dep =
136 {
137 {
138 wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
139 wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
140 wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
141 wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
142 }
143 };
144 // Re-quantize to new output space
145 tmp = vquantize_signed(tmp_dep, qi_out);
146 }
147 else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
148 {
149 // De-quantize
150 const auto vin_deq = vdequantize(vin, qi_in);
151 // Perform activation
152 const float32x4x4_t tmp_dep =
153 {
154 {
155 wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))),
156 wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))),
157 wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))),
158 wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))),
159 }
160 };
161 // Re-quantize to new output space
162 tmp = vquantize_signed(tmp_dep, qi_out);
163 }
164 else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
165 {
166 const auto vin_deq = vdequantize(vin, qi_in);
167
168 #ifdef __aarch64__
169 const uint32x4x4_t pos_mask =
170 {
171 {
172 wrapper::vcgtz(vin_deq.val[0]),
173 wrapper::vcgtz(vin_deq.val[1]),
174 wrapper::vcgtz(vin_deq.val[2]),
175 wrapper::vcgtz(vin_deq.val[3]),
176 }
177 };
178 #else // __aarch64__
179 const uint32x4x4_t pos_mask =
180 {
181 {
182 wrapper::vcgt(vin_deq.val[0], vconst_0_f32),
183 wrapper::vcgt(vin_deq.val[1], vconst_0_f32),
184 wrapper::vcgt(vin_deq.val[2], vconst_0_f32),
185 wrapper::vcgt(vin_deq.val[3], vconst_0_f32),
186 }
187 };
188 #endif // __aarch64__
189
190 const float32x4x4_t tmp_dep =
191 {
192 {
193 wrapper::vbsl(pos_mask.val[0], vin_deq.val[0], wrapper::vmul(va_f32, vin_deq.val[0])),
194 wrapper::vbsl(pos_mask.val[1], vin_deq.val[1], wrapper::vmul(va_f32, vin_deq.val[1])),
195 wrapper::vbsl(pos_mask.val[2], vin_deq.val[2], wrapper::vmul(va_f32, vin_deq.val[2])),
196 wrapper::vbsl(pos_mask.val[3], vin_deq.val[3], wrapper::vmul(va_f32, vin_deq.val[3])),
197 }
198 };
199
200 tmp = vquantize_signed(tmp_dep, qi_out);
201 }
202 else
203 {
204 ARM_COMPUTE_ERROR("Unsupported activation function");
205 }
206 wrapper::vstore(output_ptr + x, tmp);
207 }
208
209 // Compute left-over elements
210 for(; x < window_end_x; ++x)
211 {
212 qasymm8_signed_t in = *(reinterpret_cast<const qasymm8_signed_t *>(input_ptr + x));
213 qasymm8_signed_t tmp = 0;
214 if(act == ActivationLayerInfo::ActivationFunction::RELU)
215 {
216 tmp = std::max(const_0, in);
217 tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
218 }
219 else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
220 {
221 tmp = std::min(a, std::max(const_0, in));
222 tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
223 }
224 else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
225 {
226 tmp = std::min(a, std::max(b, in));
227 tmp = utility::clamp<int32_t, qasymm8_signed_t>(tmp * s + o);
228 }
229 #ifndef __aarch64__ // LUT-based implementation is used for aarch64 instead.
230 else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
231 {
232 float tmp_f = dequantize_qasymm8_signed(in, qi_in);
233 tmp_f = 1.f / (1.f + std::exp(-tmp_f));
234 tmp = quantize_qasymm8_signed(tmp_f, qi_out);
235 }
236 #endif // __aarch64__
237 else if(act == ActivationLayerInfo::ActivationFunction::TANH)
238 {
239 float tmp_f = dequantize_qasymm8_signed(in, qi_in);
240 tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
241 tmp = quantize_qasymm8_signed(tmp_f, qi_out);
242 }
243 else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
244 {
245 float tmp_f = dequantize_qasymm8_signed(in, qi_in);
246 tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
247 tmp = quantize_qasymm8_signed(tmp_f, qi_out);
248 }
249 else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
250 {
251 float tmp_f = dequantize_qasymm8_signed(in, qi_in);
252 tmp_f = tmp_f > 0 ? tmp_f : tmp_f * a_f32;
253 tmp = quantize_qasymm8_signed(tmp_f, qi_out);
254 }
255 else
256 {
257 ARM_COMPUTE_ERROR("Unsupported activation function");
258 }
259 *(output_ptr + x) = tmp;
260 }
261 },
262 input, output);
263 }
264 } // namespace cpu
265 } // namespace arm_compute
266