1 /*
2 * Copyright (c) 2020-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h"
25
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34 #include "src/core/AccessWindowStatic.h"
35 #include "src/core/NEON/wrapper/wrapper.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38
39 #include <arm_neon.h>
40
41 namespace arm_compute
42 {
43 namespace cpu
44 {
45 namespace kernels
46 {
47 namespace
48 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)49 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, const GEMMLowpOutputStageInfo *output_stage)
50 {
51 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
52 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::S32);
53
54 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
55 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
56 || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
57
58 // Check biases if exist
59 if(bias != nullptr)
60 {
61 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias);
62 ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
63 ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != bias->dimension(0));
64 }
65
66 if(dst->total_size() != 0)
67 {
68 if(dst->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
69 {
70 ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
71 }
72
73 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
74 }
75
76 return Status{};
77 }
78
scale_input(int32x4x4_t & in_s32,int32x4_t result_offset_s32,int32_t result_mult_int)79 inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
80 {
81 // Add the offset terms to GEMM's result
82 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
83 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
84 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
85 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
86
87 // Multiply by result_mult_int
88 in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
89 in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
90 in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
91 in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
92 }
93
94 template <typename T>
95 inline typename std::enable_if<std::is_same<T, uint8_t>::value,
96 typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)97 convert_to_8bit(const int16x8x2_t in_s16)
98 {
99 return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
100 }
101
102 template <typename T>
103 inline typename std::enable_if<std::is_same<T, int8_t>::value,
104 typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)105 convert_to_8bit(const int16x8x2_t in_s16)
106 {
107 return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
108 }
109
110 template <typename T>
finalize_quantization(int32x4x4_t & in_s32,int32x4_t result_shift_s32,typename wrapper::traits::neon_vector<T,16>::type min,typename wrapper::traits::neon_vector<T,16>::type max)111 inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
112 typename wrapper::traits::neon_vector<T, 16>::type max)
113 {
114 // Shift final result (negative value shift right)
115 in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
116 in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
117 in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
118 in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
119
120 // Convert S32 to S16
121 const int16x8x2_t in_s16 =
122 {
123 {
124 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
125 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
126 }
127 };
128
129 // Convert S16 to S8 or U8
130 typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
131
132 out = wrapper::vmax(out, min);
133 out = wrapper::vmin(out, max);
134
135 return out;
136 }
137 } // namespace
138
139 template <typename T>
run_internal(const ITensor * src,const ITensor * bias,ITensor * dst,const Window & window)140 void CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal(const ITensor *src, const ITensor *bias, ITensor *dst, const Window &window)
141 {
142 using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
143
144 const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
145 const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
146 const int window_step_x = 16;
147 const auto window_start_x = static_cast<int>(window.x().start());
148 const auto window_end_x = static_cast<int>(window.x().end());
149
150 const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
151 const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
152
153 VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
154 VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
155
156 Window win(window);
157 win.set(Window::DimX, Window::Dimension(0, 1, 1));
158
159 Iterator in(src, win);
160 Iterator out(dst, win);
161
162 if(bias != nullptr)
163 {
164 Window win_biases;
165 win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
166 win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
167
168 Iterator bias_i(bias, win_biases);
169 execute_window_loop(win, [&](const Coordinates &)
170 {
171 // Compute 16 elements per iteration
172 int x = window_start_x;
173 for(; x <= (window_end_x - window_step_x); x += window_step_x)
174 {
175 int32x4x4_t in_s32 =
176 {
177 {
178 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
179 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
180 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
181 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
182 }
183 };
184
185 const int32x4x4_t bias_s32 =
186 {
187 {
188 vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 0),
189 vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 4),
190 vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 8),
191 vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 12)
192 }
193 };
194
195 // Add the bias to GEMM's result
196 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
197 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
198 in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
199 in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
200
201 // Add the offset terms to GEMM's result and multiply by result_mult_int
202 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
203
204 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
205 }
206
207 // Compute left-over elements
208 for(; x < window_end_x; ++x)
209 {
210 const int bias_value = *(reinterpret_cast<const int *>(bias_i.ptr()) + x);
211 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
212
213 // Quantize
214 in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
215
216 // Store the result
217 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
218 }
219 },
220 in, bias_i, out);
221 }
222 else
223 {
224 execute_window_loop(win, [&](const Coordinates &)
225 {
226 // Compute 16 elements per iteration
227 int x = window_start_x;
228 for(; x <= (window_end_x - window_step_x); x += window_step_x)
229 {
230 int32x4x4_t in_s32 =
231 {
232 {
233 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
234 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
235 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
236 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
237 }
238 };
239
240 // Add the offset terms to GEMM's result and multiply by result_mult_int
241 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
242
243 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
244 }
245
246 // Compute left-over elements
247 for(; x < window_end_x; ++x)
248 {
249 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
250
251 // Quantize
252 in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
253
254 // Store the result
255 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
256 }
257 },
258 in, out);
259 }
260 }
261
configure(ITensorInfo * src,ITensorInfo * bias,ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)262 void CpuGemmLowpQuantizeDownInt32ScaleKernel::configure(ITensorInfo *src, ITensorInfo *bias, ITensorInfo *dst, const GEMMLowpOutputStageInfo *output_stage)
263 {
264 ARM_COMPUTE_UNUSED(bias);
265 // Perform validate step
266 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, output_stage);
267
268 // Output auto inizialitation if not yet initialized
269 auto_init_if_empty(*dst, src->clone()->set_data_type(output_stage->output_data_type));
270
271 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src,
272 bias,
273 dst,
274 output_stage));
275
276 _output_stage = output_stage;
277
278 // Configure kernel window
279 Window win = calculate_max_window(*src, Steps());
280
281 ICpuKernel::configure(win);
282
283 // Check if we need to clamp the result using min and max
284 _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
285 && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
286 && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
287 if(_output_stage->output_data_type == DataType::QASYMM8)
288 {
289 _func = &CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal<uint8_t>;
290 }
291 else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
292 {
293 _func = &CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal<int8_t>;
294 }
295 else
296 {
297 ARM_COMPUTE_ERROR("Data type not supported");
298 }
299 }
300
validate(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,const GEMMLowpOutputStageInfo * output_stage)301 Status CpuGemmLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, const GEMMLowpOutputStageInfo *output_stage)
302 {
303 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, bias, dst, output_stage));
304 return Status{};
305 }
306
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)307 void CpuGemmLowpQuantizeDownInt32ScaleKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
308 {
309 ARM_COMPUTE_UNUSED(info);
310 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
311 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
312 ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
313
314 auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
315 auto bias = tensors.get_const_tensor(TensorType::ACL_BIAS);
316 auto dst = tensors.get_tensor(TensorType::ACL_DST);
317 (this->*_func)(src, bias, dst, window);
318 }
319
name() const320 const char *CpuGemmLowpQuantizeDownInt32ScaleKernel::name() const
321 {
322 return "CpuGemmLowpQuantizeDownInt32ScaleKernel";
323 }
324 } // namespace kernels
325 } // namespace cpu
326 } // namespace arm_compute