xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuGemmInterleave4x4Kernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2016-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuGemmInterleave4x4Kernel.h"
25 
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/core/Window.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 
33 #include <arm_neon.h>
34 
35 namespace arm_compute
36 {
37 namespace cpu
38 {
39 namespace kernels
40 {
41 using namespace arm_compute::misc::shape_calculator;
42 
configure(const ITensorInfo * src,ITensorInfo * dst)43 void CpuGemmInterleave4x4Kernel::configure(const ITensorInfo *src, ITensorInfo *dst)
44 {
45     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
46 
47     // dst auto inizialitation if not yet initialized
48     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_interleaved_shape(*src)));
49 
50     // Perform validate step
51     ARM_COMPUTE_ERROR_THROW_ON(CpuGemmInterleave4x4Kernel::validate(src, dst));
52 
53     Window win = calculate_max_window(*src, Steps(1, 4));
54     ICPPKernel::configure(win);
55 }
56 
validate(const ITensorInfo * src,const ITensorInfo * dst)57 Status CpuGemmInterleave4x4Kernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
58 {
59     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
60     //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src) is not needed here as this kernel doesn't use CPU FP16 instructions.
61     ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
62 
63     if(dst->total_size() != 0)
64     {
65         const TensorShape dst_shape = compute_interleaved_shape(*src);
66         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape);
67         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
68         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst);
69     }
70 
71     return Status{};
72 }
73 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)74 void CpuGemmInterleave4x4Kernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
75 {
76     ARM_COMPUTE_UNUSED(info);
77     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
78     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
79     ARM_COMPUTE_ERROR_ON(tensors.empty());
80     /*
81     *  This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values)
82     *         |a00 a01 a02 a03|
83     *         |a10 a11 a12 a13|
84     *         |a20 a21 a22 a23| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 |
85     *         |a30 a31 a32 a33|
86     *
87     *         After this operation, the dst matrix will have the following shape: [ height * 4, ceil(width / 4.0f) ]
88     */
89     const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC);
90     ITensor       *dst = tensors.get_tensor(TensorType::ACL_DST);
91 
92     const size_t window_start_x = window.x().start();
93     const size_t window_end_x   = window.x().end();
94 
95     const size_t in_height = src->info()->dimension(1);
96     const size_t in_stride = src->info()->strides_in_bytes()[1];
97 
98     const size_t partial_y = in_height % 4;
99 
100     const size_t element_size = src->info()->element_size();
101 
102     // Set window for the src tensor
103     Window win = window;
104     win.set(Window::DimX, Window::Dimension(0, 1, 1));
105 
106     // Set window for the dst tensor
107     Window win_out(window);
108     win_out.set(Window::DimX, Window::Dimension(0, 1, 1));
109     win_out.scale(Window::DimY, 0.25f);
110 
111     Iterator in(src, win);
112     Iterator out(dst, win_out);
113 
114     execute_window_loop(win, [&](const Coordinates & id)
115     {
116         if(id.y() + 4 <= static_cast<int>(in_height))
117         {
118             for(size_t x = window_start_x; x < window_end_x; ++x)
119             {
120                 std::memcpy(out.ptr() + (x * 4 + 0) * element_size, (in.ptr() + 0 * in_stride) + x * element_size, element_size);
121                 std::memcpy(out.ptr() + (x * 4 + 1) * element_size, (in.ptr() + 1 * in_stride) + x * element_size, element_size);
122                 std::memcpy(out.ptr() + (x * 4 + 2) * element_size, (in.ptr() + 2 * in_stride) + x * element_size, element_size);
123                 std::memcpy(out.ptr() + (x * 4 + 3) * element_size, (in.ptr() + 3 * in_stride) + x * element_size, element_size);
124             }
125         }
126         else
127         {
128             for(size_t x = window_start_x; x < window_end_x; ++x)
129             {
130                 size_t y = 0;
131                 for(; y < partial_y; ++y)
132                 {
133                     std::memcpy(out.ptr() + (x * 4 + y) * element_size, (in.ptr() + y * in_stride) + x * element_size, element_size);
134                 }
135                 for(; y < 4; ++y)
136                 {
137                     std::memset(out.ptr() + (x * 4 + y) * element_size, 0, element_size);
138                 }
139             }
140         }
141     },
142     in, out);
143 }
144 
name() const145 const char *CpuGemmInterleave4x4Kernel::name() const
146 {
147     return "CpuGemmInterleave4x4Kernel";
148 }
149 } // namespace kernels
150 } // namespace cpu
151 } // namespace arm_compute
152