xref: /aosp_15_r20/external/ComputeLibrary/src/core/helpers/ScaleHelpers.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2 * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef SRC_CORE_HELPERS_SCALEHELPERS_H
25 #define SRC_CORE_HELPERS_SCALEHELPERS_H
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/QuantizationInfo.h"
29 
30 #include <algorithm>
31 #include <cmath>
32 #include <cstddef>
33 #include <cstdint>
34 
35 namespace arm_compute
36 {
37 namespace scale_helpers
38 {
39 /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
40  * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format.
41  *
42  * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
43  * @param[in] stride    Stride to access the bottom-left and bottom-right pixel values
44  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
45  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
46  * @param[in] iq_info   Input QuantizationInfo
47  * @param[in] oq_info   Output QuantizationInfo
48  *
49  * @note dx and dy must be in the range [0, 1.0]
50  *
51  * @return The bilinear interpolated pixel value
52  */
delta_bilinear_c1_quantized(const uint8_t * pixel_ptr,size_t stride,float dx,float dy,UniformQuantizationInfo iq_info,UniformQuantizationInfo oq_info)53 inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy,
54                                            UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
55 {
56     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
57 
58     const float dx1 = 1.0f - dx;
59     const float dy1 = 1.0f - dy;
60 
61     const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
62     const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
63     const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
64     const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
65 
66     const float w1  = dx1 * dy1;
67     const float w2  = dx * dy1;
68     const float w3  = dx1 * dy;
69     const float w4  = dx * dy;
70     float       res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
71     return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
72 }
73 
74 /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
75  * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format.
76  *
77  * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
78  * @param[in] stride    Stride to access the bottom-left and bottom-right pixel values
79  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
80  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
81  * @param[in] iq_info   Input QuantizationInfo
82  * @param[in] oq_info   Output QuantizationInfo
83  *
84  * @note dx and dy must be in the range [0, 1.0]
85  *
86  * @return The bilinear interpolated pixel value
87  */
delta_bilinear_c1_quantized(const int8_t * pixel_ptr,size_t stride,float dx,float dy,UniformQuantizationInfo iq_info,UniformQuantizationInfo oq_info)88 inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy,
89                                           UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
90 {
91     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
92 
93     const float dx1 = 1.0f - dx;
94     const float dy1 = 1.0f - dy;
95 
96     const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info);
97     const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info);
98     const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info);
99     const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info);
100 
101     const float w1  = dx1 * dy1;
102     const float w2  = dx * dy1;
103     const float w3  = dx1 * dy;
104     const float w4  = dx * dy;
105     float       res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
106     return static_cast<int8_t>(quantize_qasymm8_signed(res, oq_info));
107 }
108 
109 /** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
110  *
111  * @note The interpolation area depends on the width and height ration of the input and output images
112  * @note Currently average of the contributing pixels is calculated
113  *
114  * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
115  * @param[in] stride          Stride in bytes of the image
116  * @param[in] width           Width of the image
117  * @param[in] height          Height of the image
118  * @param[in] wr              Width ratio among the input image width and output image width.
119  * @param[in] hr              Height ratio among the input image height and output image height.
120  * @param[in] x               X position of the wanted pixel
121  * @param[in] y               Y position of the wanted pixel
122  *
123  * @return The pixel at (x, y) using area interpolation.
124  */
125 inline uint8_t
pixel_area_c1u8_clamp(const uint8_t * first_pixel_ptr,size_t stride,size_t width,size_t height,float wr,float hr,int x,int y)126 pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr,
127                       float hr, int x, int y)
128 {
129     ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
130 
131     // Calculate sampling position
132     float in_x = (x + 0.5f) * wr - 0.5f;
133     float in_y = (y + 0.5f) * hr - 0.5f;
134 
135     // Get bounding box offsets
136     int x_from = std::floor(x * wr - 0.5f - in_x);
137     int y_from = std::floor(y * hr - 0.5f - in_y);
138     int x_to   = std::ceil((x + 1) * wr - 0.5f - in_x);
139     int y_to   = std::ceil((y + 1) * hr - 0.5f - in_y);
140 
141     // Clamp position to borders
142     in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
143     in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
144 
145     // Clamp bounding box offsets to borders
146     x_from = ((in_x + x_from) < -1) ? -1 : x_from;
147     y_from = ((in_y + y_from) < -1) ? -1 : y_from;
148     x_to   = ((in_x + x_to) > width) ? (width - in_x) : x_to;
149     y_to   = ((in_y + y_to) > height) ? (height - in_y) : y_to;
150 
151     // Get pixel index
152     const int xi = std::floor(in_x);
153     const int yi = std::floor(in_y);
154 
155     // Bounding box elements in each dimension
156     const int x_elements = (x_to - x_from + 1);
157     const int y_elements = (y_to - y_from + 1);
158     ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
159 
160     // Sum pixels in area
161     int sum = 0;
162     for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
163     {
164         const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
165         sum                = std::accumulate(ptr, ptr + x_elements, sum);
166     }
167 
168     // Return average
169     return sum / (x_elements * y_elements);
170 }
171 
172 /** Computes bilinear interpolation using the top-left, top-right, bottom-left, bottom-right pixels and the pixel's distance between
173  * the real coordinates and the smallest following integer coordinates.
174  *
175  * @param[in] a00    The top-left pixel value.
176  * @param[in] a01    The top-right pixel value.
177  * @param[in] a10    The bottom-left pixel value.
178  * @param[in] a11    The bottom-right pixel value.
179  * @param[in] dx_val Pixel's distance between the X real coordinate and the smallest X following integer
180  * @param[in] dy_val Pixel's distance between the Y real coordinate and the smallest Y following integer
181  *
182  * @note dx and dy must be in the range [0, 1.0]
183  *
184  * @return The bilinear interpolated pixel value
185  */
delta_bilinear(float a00,float a01,float a10,float a11,float dx_val,float dy_val)186 inline float delta_bilinear(float a00, float a01, float a10, float a11, float dx_val, float dy_val)
187 {
188     const float dx1_val = 1.0f - dx_val;
189     const float dy1_val = 1.0f - dy_val;
190 
191     const float w1 = dx1_val * dy1_val;
192     const float w2 = dx_val * dy1_val;
193     const float w3 = dx1_val * dy_val;
194     const float w4 = dx_val * dy_val;
195     return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
196 }
197 } // namespace scale_helpers
198 } // namespace arm_compute
199 
200 #endif /* SRC_CORE_HELPERS_SCALEHELPERS_H */
201