1 /* 2 * Copyright (c) 2016-2022 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 #ifndef ARM_COMPUTE_NEMATH_H 25 #define ARM_COMPUTE_NEMATH_H 26 27 #include <arm_neon.h> 28 #include <array> 29 30 namespace arm_compute 31 { 32 /** Calculate floor of a vector. 33 * 34 * @param[in] val Input vector value in F32 format. 35 * 36 * @return The calculated floor vector. 37 */ 38 float32x4_t vfloorq_f32(float32x4_t val); 39 40 /** Calculate round value of a vector to nearest with ties to even. 41 * 42 * @param[in] val Input vector value in F32 format. 43 * 44 * @return The calculated round vector. 45 */ 46 float32x4_t vroundq_rte_f32(float32x4_t val); 47 48 /** Calculate inverse square root. 49 * 50 * @param[in] x Input value. 51 * 52 * @return The calculated inverse square root. 53 */ 54 float32x2_t vinvsqrt_f32(float32x2_t x); 55 56 /** Calculate inverse square root. 57 * 58 * @param[in] x Input value. 59 * 60 * @return The calculated inverse square root. 61 */ 62 float32x4_t vinvsqrtq_f32(float32x4_t x); 63 64 /** Calculate reciprocal. 65 * 66 * @param[in] x Input value. 67 * 68 * @return The calculated reciprocal. 69 */ 70 float32x2_t vinv_f32(float32x2_t x); 71 72 /** Calculate reciprocal. 73 * 74 * @param[in] x Input value. 75 * 76 * @return The calculated reciprocal. 77 */ 78 float32x4_t vinvq_f32(float32x4_t x); 79 80 /** Perform a 7th degree polynomial approximation using Estrin's method. 81 * 82 * @param[in] x Input vector value in F32 format. 83 * @param[in] coeffs Polynomial coefficients table. 84 * 85 * @return The calculated approximation. 86 */ 87 float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs); 88 89 /** Calculate exponential 90 * 91 * @param[in] x Input vector value in F32 format. 92 * 93 * @return The calculated exponent. 94 */ 95 float32x4_t vexpq_f32(float32x4_t x); 96 97 /** Calculate error function 98 * 99 * @param[in] x Input vector in F32 format. 100 * 101 * @return The calculated erf. 102 */ 103 float32x4_t verfq_f32(float32x4_t x); 104 105 /** Calculate logarithm 106 * 107 * @param[in] x Input vector value in F32 format. 108 * 109 * @return The calculated logarithm. 110 */ 111 float32x4_t vlogq_f32(float32x4_t x); 112 113 /** Calculate hyperbolic tangent. 114 * 115 * tanh(x) = (e^2x - 1)/(e^2x + 1) 116 * 117 * @note We clamp x to [-5,5] to avoid overflowing issues. 118 * 119 * @param[in] val Input vector value in F32 format. 120 * 121 * @return The calculated Hyperbolic Tangent. 122 */ 123 float32x4_t vtanhq_f32(float32x4_t val); 124 125 /** Calculate n power of a number. 126 * 127 * pow(x,n) = e^(n*log(x)) 128 * 129 * @param[in] val Input vector value in F32 format. 130 * @param[in] n Powers to raise the input to. 131 * 132 * @return The calculated power. 133 */ 134 float32x4_t vpowq_f32(float32x4_t val, float32x4_t n); 135 136 /** Round to the nearest division by a power-of-two using exponent 137 * 138 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent 139 * 140 * @param[in] x Vector of 4 elements 141 * @param[in] exponent Vector of 4 elements with integer value used to round to nearest division by a power-of-two 142 * 143 * @return the nearest division by a power-of-two using exponent 144 */ 145 int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent); 146 147 /** Round to the nearest division by a power-of-two using exponent 148 * 149 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent 150 * 151 * @param[in] x Vector of 4 elements 152 * @param[in] exponent Integer value used to round to nearest division by a power-of-two 153 * 154 * @return the nearest division by a power-of-two using exponent 155 */ 156 int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent); 157 158 /** Round to the nearest division by a power-of-two using exponent 159 * 160 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent 161 * 162 * @param[in] x Element to divide. 163 * @param[in] exponent Integer value used to round to nearest division by a power-of-two 164 * 165 * @return the nearest division by a power-of-two using exponent 166 */ 167 int32_t rounding_divide_by_pow2(int32_t x, int exponent); 168 169 /** Converts from uint8x16 to float32x4x4_t 170 * 171 * @param[in] in Vector of uint8 to be converted 172 * 173 * @return Converted vector of float 174 */ 175 float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in); 176 177 /** Converts from int8x16 to float32x4x4_t 178 * 179 * @param[in] in Vector of int8 to be converted 180 * 181 * @return Converted vector of float 182 */ 183 float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in); 184 185 /** Converts to float32x4x4_t from the specified templated 16 elements vectors 186 * 187 * @param[in] in Vector of float to be converted 188 * 189 * @return Converted vector of float 190 */ 191 template <typename T> 192 float32x4x4_t convert_to_float32x4x4(const T &in); 193 194 /** Converts from two float32x4x3_t to just one uint8x8x3_t 195 * 196 * @param[in] in1 First input vector of float to be converted 197 * @param[in] in2 Second input vector of float to be converted 198 * @param[out] out Converted output vector uint8 to store the result 199 */ 200 void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out); 201 202 /** Converts from two float32x4x4_t to just one uint8x16_t 203 * 204 * @param[in] in Vector of float to be converted 205 * @param[out] out Converted vector of uint8 to store the result 206 */ 207 void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out); 208 209 /** Converts from float32x4x4_t to just one int8x16_t 210 * 211 * @param[in] in Vector of float to be converted 212 * @param[out] out Converted vector of uint8 to store the result 213 */ 214 void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out); 215 216 /** Converts from float vector to integer vector 217 * 218 * @param[in] in Float vector to converted 219 * 220 * @return The converted integer vector 221 */ 222 template <typename float_vec_type, typename int_vec_type> 223 int_vec_type convert_float_to_int(const float_vec_type &in); 224 225 /** Converts from integer vector to float vector 226 * 227 * @param[in] in Integer vector to converted 228 * 229 * @return The converted float vector 230 */ 231 template <typename float_vec_type, typename int_vec_type> 232 float_vec_type convert_int_to_float(const int_vec_type &in); 233 234 /** Calculate sine. 235 * 236 * @param[in] val Input vector value in radians, F32 format. 237 * 238 * @return The calculated sine. 239 */ 240 float32x4_t vsinq_f32(float32x4_t val); 241 242 /** Calculate sine. 243 * 244 * @param[in] val Input vector value in radians, F32 format. 245 * 246 * @return The calculated sine. 247 */ 248 float32x2_t vsin_f32(float32x2_t val); 249 250 /** Reduce a vector to be a scalar by accumulating all lanes in the vector 251 * 252 * @param[in] v Vector to be reduced. 253 * 254 * @return the wrapped-around number. 255 */ 256 float vreduce(const float32x4_t &v); 257 258 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC 259 /** Calculate hyperbolic tangent. 260 * 261 * tanh(x) = (e^2x - 1)/(e^2x + 1) 262 * 263 * @note We clamp x to [-5,5] to avoid overflowing issues. 264 * 265 * @param[in] val Input vector value in F16 format. 266 * 267 * @return The calculated Hyperbolic Tangent. 268 */ 269 float16x8_t vtanhq_f16(float16x8_t val); 270 271 /** Calculate round value of a vector to nearest with ties to even. 272 * 273 * @param[in] val Input vector value in F16 format. 274 * 275 * @return The calculated round vector. 276 */ 277 float16x8_t vroundq_rte_f16(float16x8_t val); 278 279 /** Calculate reciprocal. 280 * 281 * @param[in] x Input value. 282 * 283 * @return The calculated reciprocal. 284 */ 285 float16x4_t vinv_f16(float16x4_t x); 286 287 /** Calculate reciprocal. 288 * 289 * @param[in] x Input value. 290 * 291 * @return The calculated reciprocal. 292 */ 293 float16x8_t vinvq_f16(float16x8_t x); 294 295 /** Calculate inverse square root. 296 * 297 * @param[in] x Input value. 298 * 299 * @return The calculated inverse square root. 300 */ 301 float16x4_t vinvsqrt_f16(float16x4_t x); 302 303 /** Calculate inverse square root. 304 * 305 * @param[in] x Input value. 306 * 307 * @return The calculated inverse square root. 308 */ 309 float16x8_t vinvsqrtq_f16(float16x8_t x); 310 311 /** Calculate exponential 312 * 313 * @param[in] x Input vector value in F16 format. 314 * 315 * @return The calculated exponent. 316 */ 317 float16x8_t vexpq_f16(float16x8_t x); 318 319 /** Calculate error function 320 * 321 * @param[in] x Input vector in F16 format. 322 * 323 * @return The calculated erf. 324 */ 325 float16x8_t verfq_f16(float16x8_t x); 326 327 /** Calculate n power of a number. 328 * 329 * pow(x,n) = e^(n*log(x)) 330 * 331 * @param[in] val Input vector value in F16 format. 332 * @param[in] n Powers to raise the input to. 333 * 334 * @return The calculated power. 335 */ 336 float16x8_t vpowq_f16(float16x8_t val, float16x8_t n); 337 338 /** Calculate sine. 339 * 340 * @param[in] val Input vector value in radians, F16 format. 341 * 342 * @return The calculated sine. 343 */ 344 float16x8_t vsinq_f16(float16x8_t val); 345 346 /** Reduce a vector to be a scalar by accumulating all lanes in the vector 347 * 348 * @param[in] v Vector to be reduced. 349 * 350 * @return the wrapped-around number. 351 */ 352 float16_t vreduce(const float16x8_t &v); 353 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ 354 } // namespace arm_compute 355 #include "src/core/NEON/NEMath.inl" 356 #endif /* ARM_COMPUTE_NEMATH_H */ 357