1/* 2 * Copyright (c) 2022 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include "helpers.h" 25#include "tile_helpers.h" // Needed for GET_SPATIAL_IDX() 26 27#if defined(POOL_AVG) 28#define POOL_OP(x, y) ((x) + (y)) 29#else /* defined(POOL_AVG) */ 30#define POOL_OP(x, y) (max((x), (y))) 31#endif /* defined(POOL_AVG) */ 32 33#define SQRT_OP(x) sqrt((x)) 34 35#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) 36 37#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z) 38 39#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) 40#define VEC_FLOAT(VEC_SIZE) VEC_DATA_TYPE(float, VEC_SIZE) 41#define VEC_INT(VEC_SIZE) VEC_DATA_TYPE(int, VEC_SIZE) 42#define CONVERT_RTE(x, type) (convert_##type##_rte((x))) 43#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type) 44#define REQUANTIZE(VEC_SIZE, input, in_offset, out_offset, in_scale, out_scale, res) \ 45 { \ 46 const VEC_FLOAT(VEC_SIZE) in_f32 = (CONVERT(input, VEC_FLOAT(VEC_SIZE)) - (VEC_FLOAT(VEC_SIZE))((float)in_offset)) * (VEC_FLOAT(VEC_SIZE))((float)in_scale); \ 47 const VEC_FLOAT(VEC_SIZE) out_f32 = in_f32 / ((VEC_FLOAT(VEC_SIZE))(float)out_scale) + ((VEC_FLOAT(VEC_SIZE))((float)out_offset)); \ 48 res = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT(VEC_SIZE)), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); \ 49 } 50#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ 51 52#if defined(POOL_L2) 53#error "L2 pooling is not supported" 54#endif /* defined(POOL_L2) */ 55 56/** Performs 3d pooling layer of size equal to MxNXD. This OpenCL kernel can perform the following pooling types: 57 * -# max, -DPOOL_MAX must be passed at compile time 58 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be excluded, -DEXCLUDE_PADDING should be passed at compile time 59 * 60 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are QASYMM8_SIGNED, QASYMM8 61 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float 62 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result 63 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X, -DPOOL_SIZE_Y, and -DPOOL_SIZE_Z. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4, -DPOOL_SIZE_Z=2 64 * @note Input tensor width, height and depth must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT, and -DSRC_DEPTH 65 * @note Output tensor height, channels, depth, and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS, -DDST_DEPTH, and -DDST_BATCH_SIZE 66 * @note Pool strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z which are the steps of the window along the x, y and z directions 67 * @note Pool pads must be passed at compile time using -DPAD_X, -DPAD_Y, -DPAD_Z 68 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 69 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE 70 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 71 * 72 * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED, QASYMM8 73 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) 74 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 75 * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) 76 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 77 * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) 78 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 79 * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) 80 * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) 81 * @param[in] input_stride_v Stride of the source tensor in V dimension (in bytes) 82 * @param[in] input_step_v input_stride_v * number of elements along V processed per workitem(in bytes) 83 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor 84 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr 85 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) 86 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 87 * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) 88 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 89 * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) 90 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 91 * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) 92 * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) 93 * @param[in] output_stride_v Stride of the destination tensor in V dimension (in bytes) 94 * @param[in] output_step_v output_stride_v * number of elements along V processed per workitem(in bytes) 95 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor 96 */ 97__kernel void pooling_3d_layer_MxN_ndhwc_quantized( 98 TENSOR5D_DECLARATION(input), 99 TENSOR5D_DECLARATION(output)) 100{ 101 // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0 102 // Note: If C is less than VEC_SIZE, VEC_SIZE should be shrunk to the closest smaller VEC_SIZE. This operation is performed on the host side 103 int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); 104 int idx_out_w = GET_SPATIAL_IDX(1, 1, 0); 105 106 // The depth size dimension and the batch size dimension are collapsed over the height dimension 107 int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT; 108 int idx_out_d = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) % DST_DEPTH; 109 int idx_out_n = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) / DST_DEPTH; 110 111 __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_v; 112 113 __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_d * 114 output_stride_w + idx_out_n * output_stride_v; 115 116 VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) 117 res0 = INITIAL_VALUE; 118 119 int idx_in_w = idx_out_w * STRIDE_X - (int)PAD_X; 120 int idx_in_h = idx_out_h * STRIDE_Y - (int)PAD_Y; 121 int idx_in_d = idx_out_d * STRIDE_Z - (int)PAD_Z; 122 123 // The start of width to consider in calculation should exclude padding 124 int pool_x_s = max((int)0, -idx_in_w); 125 // Assumed Symmetric Padding (left padding = right padding = PAD_X), the filter end should be either the pool width or what is remaining from current pos to the (src width + pad right) 126 int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH + PAD_X - idx_in_w); 127 int pool_y_s = max((int)0, -idx_in_h); 128 int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT + PAD_Y - idx_in_h); 129 int pool_z_s = max((int)0, -idx_in_d); 130 int pool_z_e = min((int)POOL_SIZE_Z, (int)SRC_DEPTH + PAD_Z - idx_in_d); 131 132#if defined(POOL_AVG) && defined(EXCLUDE_PADDING) 133 int filter_size = 0; 134#elif defined(POOL_AVG) && !defined(EXCLUDE_PADDING) // defined(POOL_AVG) && defined(EXCLUDE_PADDING) 135 int filter_size = pool_z_e * pool_y_e * pool_x_e; 136#endif // defined(POOL_AVG) && !defined(EXCLUDE_PADDING) 137 138 // The end of width to consider in calculation should exclude PAD_X 139 pool_x_e = min(pool_x_e, SRC_WIDTH - idx_in_w); 140 pool_y_e = min(pool_y_e, SRC_HEIGHT - idx_in_h); 141 pool_z_e = min(pool_z_e, SRC_DEPTH - idx_in_d); 142 143 for(int z = pool_z_s; z < pool_z_e; ++z) 144 { 145 int depth_offset_src = (z + idx_in_d) * input_stride_w; 146 for(int y = pool_y_s; y < pool_y_e; ++y) 147 { 148 int height_offset_src = (y + idx_in_h) * input_stride_z; 149#pragma unroll 8 150 for(int x = pool_x_s; x < pool_x_e; ++x) 151 { 152 int width_offset_src = (x + idx_in_w) * input_stride_y; 153 154 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 155 data; 156 VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) 157 data0; 158 159 data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src)); 160 data0 = CONVERT(data, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); 161 162 res0 = POOL_OP(res0, data0); 163 164#if defined(POOL_AVG) && defined(EXCLUDE_PADDING) 165 filter_size++; 166#endif // defined(POOL_AVG) && defined(EXCLUDE_PADDING) 167 } 168 } 169 } 170 171#if defined(POOL_AVG) 172 res0 = (res0 + (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))(filter_size >> 1)) / filter_size; 173#endif // defined(POOL_AVG) 174 175 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 176 out_q0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); 177 178#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) 179 REQUANTIZE(VEC_SIZE, out_q0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT, out_q0); 180#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ 181 182 STORE_VECTOR_SELECT(out_q, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); 183} 184#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z) 185#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) 186