xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nchw/normalization_layer.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2017-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25#include "tile_helpers.h"
26
27#define MUL_OP(x, y) ((x) * (y))
28#define ADD_OP(x, y) ((x) + (y))
29#define DIV_OP(x, y) ((x) / (y))
30#define POW_OP(x, y) pow((x), (y))
31#define SQCVT_SAT(a) (a)
32
33#if defined(NUM_SLICES)
34/** Apply cross-map normalization.
35 *
36 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
37 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16
38 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5
39 * @note The number of slices should be given as a preprocessor argument using -DNUM_SLICES=size. e.g. -DNUM_SLICES=192
40 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA
41 *
42 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
43 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
44 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
45 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
46 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
47 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
48 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
49 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
50 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
51 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
52 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
53 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
54 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
55 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
56 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
57 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
58 */
59__kernel void normalization_layer_cross_map_nchw(TENSOR3D_DECLARATION(input),
60                                                 TENSOR3D_DECLARATION(output))
61{
62    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
63    Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
64
65    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
66    acc = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0;
67    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
68    coeff_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(COEFF);
69    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
70    beta_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(BETA);
71    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
72    kappa_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(KAPPA);
73
74    const int current_slice = get_global_id(2);
75    const int left_slice    = max(-(int)RADIUS, -current_slice);
76    const int right_slice   = min((int)RADIUS, (int)NUM_SLICES - 1 - current_slice);
77
78    for(int i = left_slice; i <= right_slice; i++)
79    {
80        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
81        values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)tensor3D_offset(&in, 0, 0, i));
82        acc    = ADD_OP(acc, MUL_OP(values, values));
83    }
84
85    acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v);
86    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
87    normalized = POW_OP(acc, beta_v);
88    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
89    normalized_pixel = DIV_OP(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr), normalized);
90
91    VSTORE(VEC_SIZE)
92    (normalized_pixel, 0, (__global DATA_TYPE *)out.ptr);
93}
94#endif /* defined(NUM_SLICES) */
95
96#if defined(WIDTH_SIZE)
97/** Apply in-map normalization when tensors are in the NCHW data layout format.
98 *
99 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
100 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16
101 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5
102 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA
103 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER is; x_dimension % VEC_SIZE. e.g. -DVEC_SIZE_LEFTOVER=1
104 *
105 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
106 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
107 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
108 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
109 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
110 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
111 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
112 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
113 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
114 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
115 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
116 * @param[in]  output_stride_y                      Stride of the first destination tensor in Y dimension (in bytes)
117 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
118 * @param[in]  output_stride_z                      Stride of the first source tensor in Z dimension (in bytes)
119 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
120 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
121 */
122__kernel void normalization_layer_in_map_nchw(TENSOR3D_DECLARATION(input),
123                                              TENSOR3D_DECLARATION(output))
124{
125    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
126    Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
127
128    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
129    acc = 0;
130    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
131    coeff_v = SQCVT_SAT(COEFF);
132    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
133    beta_v = SQCVT_SAT(BETA);
134    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
135    kappa_v = SQCVT_SAT(KAPPA);
136
137    const int left_pos  = -(int)RADIUS;
138    const int right_pos = (int)RADIUS;
139
140#if defined(IN_MAP_2D)
141    const int current_row = get_global_id(1);
142    const int first_row   = max(-(int)RADIUS, -current_row);
143    const int last_row    = min((int)RADIUS, (int)get_global_size(1) - 1 - current_row);
144#endif /* defined(IN_MAP_2D) */
145
146#if defined(IN_MAP_2D)
147    for(int j = first_row; j <= last_row; ++j)
148    {
149#endif /* defined(IN_MAP_2D) */
150        for(int i = left_pos; i <= right_pos; ++i)
151        {
152#if defined(IN_MAP_2D)
153            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
154            values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)tensor3D_offset(&in, i, j, 0));
155#else  /* defined(IN_MAP_2D) */
156            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
157            values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)tensor3D_offset(&in, i, 0, 0));
158#endif /* defined(IN_MAP_2D) */
159            acc = ADD_OP(acc, MUL_OP(values, values));
160        }
161#if defined(IN_MAP_2D)
162    }
163#endif /* defined(IN_MAP_2D) */
164
165    acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v);
166    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
167    normalized = POW_OP(acc, beta_v);
168    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
169    normalized_pixel = DIV_OP(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr), normalized);
170
171    VSTORE(VEC_SIZE)
172    (normalized_pixel, 0, (__global DATA_TYPE *)out.ptr);
173}
174#endif // defined(WIDTH_SIZE)