xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nchw/im2col.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2018-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25#if defined(DATA_TYPE) && defined(ELEMENT_SIZE)
26
27#if ELEMENT_SIZE == 1
28#define COND_DATA_TYPE char
29#elif ELEMENT_SIZE == 2
30#define COND_DATA_TYPE short
31#elif ELEMENT_SIZE == 4
32#define COND_DATA_TYPE int
33#else // ELEMENT_SIZE
34#error "Element size not support"
35#endif // ELEMENT_SIZE
36
37#if defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(SRC_DEPTH)
38/** This opencl kernel performs im2col when the kernel size is 1x1, the stride_x = 1 and the data layout is NCHW
39 *
40 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
41 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
42 * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
43 * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
44 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
45 * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
46 *
47 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
48 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
49 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
50 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
51 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
52 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
53 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
54 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
55 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
56 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
57 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
58 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
59 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
60 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
61 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
62 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
63 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
64 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
65 */
66__kernel void im2col1x1_stridex1_nchw(
67    TENSOR3D_DECLARATION(src),
68#if defined(NUM_GROUPS)
69    TENSOR3D_DECLARATION(dst),
70#else  // defined(NUM_GROUPS)
71    IMAGE_DECLARATION(dst),
72#endif // defined(NUM_GROUPS)
73    uint src_stride_w,
74    uint dst_stride_w)
75{
76    const uint xc    = get_global_id(0) * 4;         // x coordinate in the convolved tensor
77    const uint yc    = get_global_id(1);             // y coordinate in the convolved tensor
78    const uint ch    = get_global_id(2) % SRC_DEPTH; // input feature map
79    const uint batch = get_global_id(2) / SRC_DEPTH; // batch size
80
81    // Clamp xc
82    // The strategy clamps at "xc" as it will be a valid value for sure
83    uint4 xc_clamped = xc + (uint4)(0, 1, 2, 3);
84
85    // Check which values are valid
86    const VEC_DATA_TYPE(COND_DATA_TYPE, 4) cond0 = CONVERT((xc_clamped < SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
87
88    xc_clamped = select((uint4)xc, xc_clamped, convert_int4(cond0));
89
90    // Calculate input indices
91    const uint xi = xc;
92    const uint yi = yc * STRIDE_Y;
93
94    // Calculate output indices
95
96#if defined(NUM_GROUPS)
97    const uint xo = ch % (SRC_DEPTH / NUM_GROUPS);
98    const uint zo = ch / (SRC_DEPTH / NUM_GROUPS);
99#else                                                   // defined(NUM_GROUPS)
100    const uint xo              = ch;
101#endif                                                  // defined(NUM_GROUPS)
102    const uint4 yo = xc_clamped + yc * CONVOLVED_WIDTH; // Index of the convolution
103
104    // Get input and output address
105    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
106#if defined(NUM_GROUPS)
107    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + zo * dst_stride_z + batch * dst_stride_w;
108#else  // defined(NUM_GROUPS)
109    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + batch * dst_stride_w;
110#endif // defined(NUM_GROUPS)
111
112    VEC_DATA_TYPE(DATA_TYPE, 4)
113    data = vload4(0, (__global DATA_TYPE *)input_ptr);
114
115    // If out-of-bound, overwrite with the first element
116    data = select((VEC_DATA_TYPE(DATA_TYPE, 4))data.s0, data, cond0);
117
118    *(__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) = data.s0;
119    *(__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) = data.s1;
120    *(__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) = data.s2;
121    *(__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) = data.s3;
122
123#ifdef HAS_BIAS
124#if defined(NUM_GROUPS)
125    if(xo == (SRC_DEPTH / NUM_GROUPS - 1))
126#else  // defined(NUM_GROUPS)
127    if(ch == (SRC_DEPTH - 1))
128#endif // defined(NUM_GROUPS)
129    {
130        *((__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) + 1) = 1.0f;
131        *((__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) + 1) = 1.0f;
132        *((__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) + 1) = 1.0f;
133        *((__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) + 1) = 1.0f;
134    }
135#endif // HAS_BIAS
136}
137#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(SRC_DEPTH)
138
139#if defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
140#if defined(DILATION_X) && defined(DILATION_Y)
141/** This opencl kernel performs a generic im2col implementation when the data layout is NCHW
142 *
143 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
144 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
145 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
146 * @note The kernel width, height and depth must be passed at compile time using -DKERNEL_WIDTH, -DKERNEL_HEIGHT and -DSRC_DEPTH: e.g. -DKERNEL_WIDTH=3, -DKERNEL_HEIGHT=3 and -DSRC_DEPTH=64
147 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
148 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
149 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
150 * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
151 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
152 * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
153 *
154 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
155 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
156 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
157 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
158 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
159 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
160 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
161 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
162 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
163 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
164 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
165 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
166 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
167 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
168 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
169 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
170 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
171 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
172 */
173__kernel void im2col_generic_nchw(
174    TENSOR3D_DECLARATION(src),
175#if defined(NUM_GROUPS)
176    TENSOR3D_DECLARATION(dst),
177#else  // defined(NUM_GROUPS)
178    IMAGE_DECLARATION(dst),
179#endif // defined(NUM_GROUPS)
180    uint src_stride_w,
181    uint dst_stride_w)
182{
183    const int xc    = get_global_id(0);             // x coordinate in the convolved tensor
184    const int yc    = get_global_id(1);             // y coordinate in the convolved tensor
185    const int ch    = get_global_id(2) % SRC_DEPTH; // input feature map
186    const int batch = get_global_id(2) / SRC_DEPTH; // batch size
187
188    // Calculate input indices
189    const int xi = xc * STRIDE_X - PAD_LEFT;
190    const int yi = yc * STRIDE_Y - PAD_TOP;
191
192    // Calculate output indices
193#if defined(NUM_GROUPS)
194    const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * KERNEL_WIDTH * KERNEL_HEIGHT;
195    const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
196#else                                         // defined(NUM_GROUPS)
197    const int xo                   = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
198#endif                                        // defined(NUM_GROUPS)
199    const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
200
201    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
202#if defined(NUM_GROUPS)
203    __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w)) + xo;
204#else  // defined(NUM_GROUPS)
205    __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
206#endif // defined(NUM_GROUPS)
207
208    // Linearize convolution elements
209    for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
210    {
211        int y = yi + yk * DILATION_Y;
212        for(int xk = 0; xk < KERNEL_WIDTH; ++xk, ++output_ptr)
213        {
214            int x = xi + xk * DILATION_X;
215#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
216            *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
217#else  // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
218            if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
219            {
220                *output_ptr = PAD_VALUE;
221            }
222            else
223            {
224                *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
225            }
226#endif // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
227        }
228    }
229
230#ifdef HAS_BIAS
231#if defined(NUM_GROUPS)
232    if((xo / (KERNEL_WIDTH * KERNEL_HEIGHT)) == (SRC_DEPTH / NUM_GROUPS - 1))
233#else  // defined(NUM_GROUPS)
234    if(ch == (SRC_DEPTH - 1))
235#endif // defined(NUM_GROUPS)
236    {
237        *output_ptr = 1.0f;
238    }
239#endif // HAS_BIAS
240}
241#endif // defined(DILATION_X) && defined(DILATION_Y)
242
243/** This opencl kernel performs im2col when the kernel size is 3x3 and the data layout is NCHW
244 *
245 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
246 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
247 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
248 * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
249 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
250 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
251 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
252 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
253 *
254 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
255 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
256 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
257 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
258 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
259 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
260 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
261 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
262 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
263 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
264 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
265 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
266 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
267 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
268 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
269 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
270 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
271 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
272 */
273__kernel void im2col3x3_nchw(
274    TENSOR3D_DECLARATION(src),
275#if defined(NUM_GROUPS)
276    TENSOR3D_DECLARATION(dst),
277#else  // defined(NUM_GROUPS)
278    IMAGE_DECLARATION(dst),
279#endif // defined(NUM_GROUPS)
280    uint src_stride_w,
281    uint dst_stride_w)
282{
283    const int xc    = get_global_id(0);             // x coordinate in the convolved tensor
284    const int yc    = get_global_id(1);             // y coordinate in the convolved tensor
285    const int ch    = get_global_id(2) % SRC_DEPTH; // input feature map
286    const int batch = get_global_id(2) / SRC_DEPTH; // batch size
287
288    // Calculate input indices
289    const int xi = xc * STRIDE_X - PAD_LEFT;
290    const int yi = yc * STRIDE_Y - PAD_TOP;
291
292    // Calculate output indices
293#if defined(NUM_GROUPS)
294    const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 9; // 3x3
295    const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
296#else                                         // defined(NUM_GROUPS)
297    const int xo               = ch * 9; // 3x3
298#endif                                        // defined(NUM_GROUPS)
299    const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
300
301    // Get input and output address
302    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
303#if defined(NUM_GROUPS)
304    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
305#else  // defined(NUM_GROUPS)
306    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
307#endif // defined(NUM_GROUPS)
308
309    VEC_DATA_TYPE(DATA_TYPE, 3)
310    row0 = vload3(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
311    VEC_DATA_TYPE(DATA_TYPE, 3)
312    row1 = vload3(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
313    VEC_DATA_TYPE(DATA_TYPE, 3)
314    row2 = vload3(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
315
316#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
317    // Put 0 if the value is out-of-bound
318    int3 x = (int3)xi + (int3)(0, 1, 2);
319    int3 y = (int3)yi + (int3)(0, 1, 2);
320
321    VEC_DATA_TYPE(COND_DATA_TYPE, 3)
322    cond0 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s0 >= 0 && y.s0 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
323    VEC_DATA_TYPE(COND_DATA_TYPE, 3)
324    cond1 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s1 >= 0 && y.s1 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
325    VEC_DATA_TYPE(COND_DATA_TYPE, 3)
326    cond2 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s2 >= 0 && y.s2 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
327
328    row0 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row0, cond0);
329    row1 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row1, cond1);
330    row2 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row2, cond2);
331#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
332
333    vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, (__global DATA_TYPE *)output_ptr);
334    *((__global DATA_TYPE *)output_ptr + 8) = row2.s2;
335
336#ifdef HAS_BIAS
337#if defined(NUM_GROUPS)
338    if((xo / 9) == (SRC_DEPTH / NUM_GROUPS - 1))
339#else  // defined(NUM_GROUPS)
340    if(ch == (SRC_DEPTH - 1))
341#endif // defined(NUM_GROUPS)
342    {
343        *((__global DATA_TYPE *)output_ptr + 9) = 1.0f;
344    }
345#endif // HAS_BIAS
346}
347
348/** This opencl kernel performs im2col when the kernel size is 5x5 and the data layout is NCHW
349 *
350 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
351 * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
352 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
353 * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
354 * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
355 * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
356 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
357 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
358 * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
359 *
360 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
361 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
362 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
363 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
364 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
365 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
366 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
367 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
368 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
369 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
370 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
371 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
372 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
373 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
374 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
375 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
376 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
377 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
378 */
379__kernel void im2col5x5_nchw(
380    TENSOR3D_DECLARATION(src),
381#if defined(NUM_GROUPS)
382    TENSOR3D_DECLARATION(dst),
383#else  // defined(NUM_GROUPS)
384    IMAGE_DECLARATION(dst),
385#endif // defined(NUM_GROUPS)
386    uint src_stride_w,
387    uint dst_stride_w)
388{
389    const int xc    = get_global_id(0);             // x coordinate in the convolved tensor
390    const int yc    = get_global_id(1);             // y coordinate in the convolved tensor
391    const int ch    = get_global_id(2) % SRC_DEPTH; // input feature map
392    const int batch = get_global_id(2) / SRC_DEPTH; // batch size
393
394    // Calculate input indices
395    const int xi = xc * STRIDE_X - PAD_LEFT;
396    const int yi = yc * STRIDE_Y - PAD_TOP;
397
398    // Calculate output indices
399#if defined(NUM_GROUPS)
400    const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 25; // 5x5
401    const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
402#else                                         // defined(NUM_GROUPS)
403    const int xo               = ch * 25; // 5x5
404#endif                                        // defined(NUM_GROUPS)
405    const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
406
407#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
408    // Put 0 if the value is out-of-bound
409    int4 x0 = (int4)xi + (int4)(0, 1, 2, 3);
410    int4 y0 = (int4)yi + (int4)(0, 1, 2, 3);
411    int  x1 = xi + 4;
412    int  y1 = yi + 4;
413
414    // Check if we could have out-of-bounds elements in the x direction
415    VEC_DATA_TYPE(COND_DATA_TYPE, 4)
416    x0_condition = CONVERT((x0 >= (int4)0 && x0 < (int4)SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
417    VEC_DATA_TYPE(COND_DATA_TYPE, 4)
418    y0_condition                = CONVERT((y0 >= (int4)0 && y0 < (int4)SRC_HEIGHT), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
419    COND_DATA_TYPE x1_condition = (COND_DATA_TYPE)(x1 >= 0 && x1 < SRC_WIDTH);
420    COND_DATA_TYPE y1_condition = (COND_DATA_TYPE)(y1 >= 0 && y1 < SRC_HEIGHT);
421#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
422
423    // Get input and output address
424    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
425#if defined(NUM_GROUPS)
426    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
427#else  // defined(NUM_GROUPS)
428    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
429#endif // defined(NUM_GROUPS)
430
431    {
432        VEC_DATA_TYPE(DATA_TYPE, 4)
433        row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
434        DATA_TYPE
435        row01 = *((__global DATA_TYPE *)input_ptr + 4);
436
437        input_ptr += src_stride_y;
438
439        VEC_DATA_TYPE(DATA_TYPE, 4)
440        row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
441        DATA_TYPE
442        row11 = *((__global DATA_TYPE *)input_ptr + 4);
443
444#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
445        VEC_DATA_TYPE(COND_DATA_TYPE, 4)
446        cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s0;
447        VEC_DATA_TYPE(COND_DATA_TYPE, 4)
448        cond10                = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s1;
449        COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s0);
450        COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s1);
451
452        // Replace with 0 if the value is not valid
453        row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
454        row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
455        row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
456        row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
457#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
458
459        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
460                                              row10.s012),
461                0, (__global DATA_TYPE *)output_ptr);
462        vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
463
464        input_ptr += src_stride_y;
465        output_ptr += 10 * dst_stride_x;
466    }
467
468    {
469        VEC_DATA_TYPE(DATA_TYPE, 4)
470        row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
471        DATA_TYPE
472        row01 = *((__global DATA_TYPE *)input_ptr + 4);
473
474        input_ptr += src_stride_y;
475
476        VEC_DATA_TYPE(DATA_TYPE, 4)
477        row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
478        DATA_TYPE
479        row11 = *((__global DATA_TYPE *)input_ptr + 4);
480
481#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
482        VEC_DATA_TYPE(COND_DATA_TYPE, 4)
483        cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s2;
484        VEC_DATA_TYPE(COND_DATA_TYPE, 4)
485        cond10                = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s3;
486        COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s2);
487        COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s3);
488
489        // Replace with 0 if the value is not valid
490        row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
491        row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
492        row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
493        row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
494#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
495
496        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
497                                              row10.s012),
498                0, (__global DATA_TYPE *)output_ptr);
499        vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
500
501        input_ptr += src_stride_y;
502        output_ptr += 10 * dst_stride_x;
503    }
504
505    {
506        VEC_DATA_TYPE(DATA_TYPE, 4)
507        row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
508        DATA_TYPE
509        row01 = *((__global DATA_TYPE *)input_ptr + 4);
510
511        input_ptr += src_stride_y;
512
513#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
514        VEC_DATA_TYPE(COND_DATA_TYPE, 4)
515        cond00                = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y1_condition;
516        COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y1_condition);
517
518        // Replace with 0 if the value is not valid
519        row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
520        row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
521#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
522
523        vstore4(row00, 0, (__global DATA_TYPE *)output_ptr);
524        *((__global DATA_TYPE *)output_ptr + 4) = row01;
525
526        output_ptr += 5 * dst_stride_x;
527    }
528
529#ifdef HAS_BIAS
530#if defined(NUM_GROUPS)
531    if((xo / 25) == (SRC_DEPTH / NUM_GROUPS - 1))
532#else  // defined(NUM_GROUPS)
533    if(ch == (SRC_DEPTH - 1))
534#endif // defined(NUM_GROUPS)
535    {
536        *((__global DATA_TYPE *)output_ptr) = 1.0f;
537    }
538#endif // HAS_BIAS
539}
540#endif // defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
541
542#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH)
543/** This opencl kernel performs im2col when the kernel size is 11x11, we do not have paddings and the data layout is NCHW
544 *
545 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
546 * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
547 * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
548 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
549 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
550 * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
551 *
552 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
553 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
554 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
555 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
556 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
557 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
558 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
559 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
560 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
561 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
562 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
563 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
564 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
565 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
566 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
567 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
568 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
569 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
570 */
571__kernel void im2col11x11_padx0_pady0_nchw(
572    TENSOR3D_DECLARATION(src),
573#if defined(NUM_GROUPS)
574    TENSOR3D_DECLARATION(dst),
575#else  // defined(NUM_GROUPS)
576    IMAGE_DECLARATION(dst),
577#endif // defined(NUM_GROUPS)
578    uint src_stride_w,
579    uint dst_stride_w)
580{
581    const int xc    = get_global_id(0);             // x coordinate in the convolved tensor
582    const int yc    = get_global_id(1);             // y coordinate in the convolved tensor
583    const int ch    = get_global_id(2) % SRC_DEPTH; // input feature map
584    const int batch = get_global_id(2) / SRC_DEPTH; // batch size
585
586    // Calculate input indices
587    const int xi = xc * STRIDE_X;
588    const int yi = yc * STRIDE_Y;
589
590    // Calculate output indices
591#if defined(NUM_GROUPS)
592    const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 121; // 11x11
593    const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
594#else                                         // defined(NUM_GROUPS)
595    const int xo               = ch * 121; // 11x11
596#endif                                        // defined(NUM_GROUPS)
597    const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
598
599    // Get input and output address
600    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
601#if defined(NUM_GROUPS)
602    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
603#else  // defined(NUM_GROUPS)
604    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
605#endif // defined(NUM_GROUPS)
606
607    {
608        VEC_DATA_TYPE(DATA_TYPE, 8)
609        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
610        VEC_DATA_TYPE(DATA_TYPE, 3)
611        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
612
613        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
614        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
615
616        input_ptr += src_stride_y;
617        output_ptr += 11 * src_stride_x;
618    }
619
620    {
621        VEC_DATA_TYPE(DATA_TYPE, 8)
622        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
623        VEC_DATA_TYPE(DATA_TYPE, 3)
624        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
625
626        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
627        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
628
629        input_ptr += src_stride_y;
630        output_ptr += 11 * src_stride_x;
631    }
632
633    {
634        VEC_DATA_TYPE(DATA_TYPE, 8)
635        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
636        VEC_DATA_TYPE(DATA_TYPE, 3)
637        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
638
639        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
640        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
641
642        input_ptr += src_stride_y;
643        output_ptr += 11 * src_stride_x;
644    }
645
646    {
647        VEC_DATA_TYPE(DATA_TYPE, 8)
648        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
649        VEC_DATA_TYPE(DATA_TYPE, 3)
650        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
651
652        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
653        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
654
655        input_ptr += src_stride_y;
656        output_ptr += 11 * src_stride_x;
657    }
658
659    {
660        VEC_DATA_TYPE(DATA_TYPE, 8)
661        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
662        VEC_DATA_TYPE(DATA_TYPE, 3)
663        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
664
665        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
666        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
667
668        input_ptr += src_stride_y;
669        output_ptr += 11 * src_stride_x;
670    }
671
672    {
673        VEC_DATA_TYPE(DATA_TYPE, 8)
674        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
675        VEC_DATA_TYPE(DATA_TYPE, 3)
676        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
677
678        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
679        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
680
681        input_ptr += src_stride_y;
682        output_ptr += 11 * src_stride_x;
683    }
684
685    {
686        VEC_DATA_TYPE(DATA_TYPE, 8)
687        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
688        VEC_DATA_TYPE(DATA_TYPE, 3)
689        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
690
691        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
692        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
693
694        input_ptr += src_stride_y;
695        output_ptr += 11 * src_stride_x;
696    }
697
698    {
699        VEC_DATA_TYPE(DATA_TYPE, 8)
700        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
701        VEC_DATA_TYPE(DATA_TYPE, 3)
702        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
703
704        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
705        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
706
707        input_ptr += src_stride_y;
708        output_ptr += 11 * src_stride_x;
709    }
710
711    {
712        VEC_DATA_TYPE(DATA_TYPE, 8)
713        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
714        VEC_DATA_TYPE(DATA_TYPE, 3)
715        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
716
717        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
718        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
719
720        input_ptr += src_stride_y;
721        output_ptr += 11 * src_stride_x;
722    }
723
724    {
725        VEC_DATA_TYPE(DATA_TYPE, 8)
726        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
727        VEC_DATA_TYPE(DATA_TYPE, 3)
728        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
729
730        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
731        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
732
733        input_ptr += src_stride_y;
734        output_ptr += 11 * src_stride_x;
735    }
736
737    {
738        VEC_DATA_TYPE(DATA_TYPE, 8)
739        row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
740        VEC_DATA_TYPE(DATA_TYPE, 3)
741        row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
742
743        vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
744        vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
745
746        output_ptr += 11 * src_stride_x;
747    }
748
749#ifdef HAS_BIAS
750#if defined(NUM_GROUPS)
751    if((xo / 121) == (SRC_DEPTH / NUM_GROUPS - 1))
752#else  // defined(NUM_GROUPS)
753    if(ch == (SRC_DEPTH - 1))
754#endif // defined(NUM_GROUPS)
755    {
756        *((__global DATA_TYPE *)output_ptr) = 1.0f;
757    }
758#endif // HAS_BIAS
759}
760#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH)
761
762#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
763/** This opencl kernel performs im2col when the kernel size is greater than 1x1, we do not have paddings and the data layout is NCHW
764 *
765 * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float.
766 * @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=4.
767 * @note The width modulo vector size must be passed at compile time using -DWIDTH_MOD_VECTOR_SIZE e.g. -DWIDTH_MOD_VECTOR_SIZE=3.
768 * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
769 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
770 * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
771 *
772 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
773 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
774 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
775 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
776 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
777 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
778 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
779 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
780 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
781 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
782 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
783 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
784 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
785 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
786 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
787 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
788 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes).
789 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes).
790 */
791__kernel void im2col_generic_padx0_pady0_nchw(
792    TENSOR3D_DECLARATION(src),
793#if defined(NUM_GROUPS)
794    TENSOR3D_DECLARATION(dst),
795#else  // defined(NUM_GROUPS)
796    IMAGE_DECLARATION(dst),
797#endif // defined(NUM_GROUPS)
798    uint src_stride_w,
799    uint dst_stride_w)
800{
801    const int xc    = get_global_id(0);             // x coordinate in the convolved tensor
802    const int yc    = get_global_id(1);             // y coordinate in the convolved tensor
803    const int ch    = get_global_id(2) % SRC_DEPTH; // input feature map
804    const int batch = get_global_id(2) / SRC_DEPTH; // batch size
805
806    // Calculate input indices
807    const int xi = xc * STRIDE_X;
808    const int yi = yc * STRIDE_Y;
809
810    // Calculate output indices
811#if defined(NUM_GROUPS)
812    const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * KERNEL_WIDTH * KERNEL_HEIGHT;
813    const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
814#else                                         // defined(NUM_GROUPS)
815    const int xo                   = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
816#endif                                        // defined(NUM_GROUPS)
817    const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
818
819    __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
820#if defined(NUM_GROUPS)
821    __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w)) + xo;
822#else  // defined(NUM_GROUPS)
823    __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
824#endif // defined(NUM_GROUPS)
825
826    // Linearize convolution elements
827    for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
828    {
829        int last_x = 0;
830        for(int x = xi, x_e = xi + KERNEL_WIDTH; x + VECTOR_SIZE <= x_e; x += VECTOR_SIZE, output_ptr += VECTOR_SIZE)
831        {
832            VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
833            row = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
834            VSTORE(VECTOR_SIZE)
835            (row, 0, output_ptr);
836            last_x = x;
837        }
838        // Copy the remainder of the row by doing VLOAD(WIDTH_MOD_VECTOR_SIZE) and VSTORE(WIDTH_MOD_VECTOR_SIZE).
839        // Note that x and output_ptr have already been incremented by VECTOR_SIZE by the loop just before exit.
840#if WIDTH_MOD_VECTOR_SIZE == 1
841        *output_ptr = *((__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
842#elif WIDTH_MOD_VECTOR_SIZE > 1
843        VEC_DATA_TYPE(DATA_TYPE, WIDTH_MOD_VECTOR_SIZE)
844        row = VLOAD(WIDTH_MOD_VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
845        VSTORE(WIDTH_MOD_VECTOR_SIZE)
846        (row, 0, output_ptr);
847#endif /* WIDTH_MOD_VECTOR_SIZE */
848        output_ptr += WIDTH_MOD_VECTOR_SIZE;
849    } /* End of loop over KERNEL_HEIGHT */
850
851#ifdef HAS_BIAS
852#if defined(NUM_GROUPS)
853    if((xo / (KERNEL_WIDTH * KERNEL_HEIGHT)) == (SRC_DEPTH / NUM_GROUPS - 1))
854#else  // defined(NUM_GROUPS)
855    if(ch == (SRC_DEPTH - 1))
856#endif // defined(NUM_GROUPS)
857    {
858        *output_ptr = 1.0f;
859    }
860#endif // HAS_BIAS
861}
862#endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
863#endif // defined(DATA_TYPE) && defined(ELEMENT_SIZE)